Skip to main content
Log in

The Problem of Assessing Individual Sensitivity and Tolerance to Hypoxia in Animals and Humans

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The problems of individual sensitivity and tolerance of an organism to environmental exposures refer to most fundamental challenges of physiology being tackled for a long time. Meanwhile, different authors may be at variance in interpreting the terms “sensitivity” and “tolerance”. This review summarizes literature data on the issues of interpreting and assessing sensitivity and tolerance to hypoxia. A special focus is on those studies which compare the initial individual response of an organism to hypoxia and its viability at subsequent stages of hypoxic and other extreme exposures. When resolving these issues, it is necessary to allow for the existence of two opposite life support strategies, active and passive. The first strategy takes advantage of early detecting detrimental exposures and mobilizing energy resources aimed at their avoidance. The second strategy implies saving (instead of mobilizing) energy resources due to hierarchical functional activity limitation (downregulation) which allows an organism to survive exposure as long as possible at relatively low sensitivity and reactivity. The existence of the second strategy disallows unambiguous interpretation of results of hypoxic tolerance assessment based on analyzing functional disorders, such as mental and physical performance decrement and locomotor incoordination, which arise under hypoxic exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sirotinin, N.N., Evolyutsiya rezistentnosti i reaktivnosti organizma (Evolution of Resistance and Reactivity of an Organism), Moscow, 1981.

  2. Malkin, V.B. and Gippenreiter, E.B., Ostraya i khronicheskaya gipoksiya (Acute and Chronic Hypoxia), Moscow, 1977.

  3. Ushakov, I.B., Shtemberg, A.S., and Shafirkin, A.V., Reaktivnost’ i rezistentnost’ organizma mlekopitayushchikh (Reactivity and Resistance of the Mammalian Organism), Moscow, 2007.

  4. Novikov, V.S. and Soroko, S.I., Fiziologicheskie osnovy zhiznedeyatel’nosti cheloveka v ekstremal’nykh usloviyakh (Physiological Basis of Human Vital Activity under Extreme Conditions), St. Petersburg, 2017.

  5. van Raaij, M.T., Pit, D.S., Balm, P.H., Steffens, A.B., and van den Thillart, G.E., Behavioral strategy and the physiological stress response in rainbow trout exposed to severe hypoxia, Horm Behav., 1996, vol. 30, no. 1, pp. 85–92.

    Article  CAS  PubMed  Google Scholar 

  6. Bickler, P.E. and Buck, L.T., Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability, Annu. Rev. Physiol., 2007, vol. 69, pp. 145–170.

    Article  CAS  PubMed  Google Scholar 

  7. Butler, P.J., Metabolic regulation in diving birds and mammals, Respir. Physiol. Neurobiol., 2004, vol. 141, no. 3, pp. 297–315.

    Article  PubMed  Google Scholar 

  8. Savina, M.V., Mekhanizmy adaptatsii tkanevogo dykhaniya v evolyutsii pozvonochnykh (Mechanisms of Adaptation of Tissue Respiration in Evolution of Vertebrates), St. Petersburg, 1992.

  9. Wong, T.M. and Lee, A.Y., Cardiac antiarrhythmic evaluation of naloxone with or without propranolol using a modified chloroform-hypoxia screening test in the rat, Clin. Exp. Pharmacol. Physiol., 1985, vol. 12, no. 4, pp. 379–385.

    Article  CAS  PubMed  Google Scholar 

  10. Klyashtorin, L.B., Vodnoe dykhanie i kislorodnie potrebnosti ryb (Aquatic Respiration and Oxygen Demands in Fish), Moscow, 1982.

  11. Lukyanenko, V.I., Ekologicheskie aspekty ikhtiotoksikologii (Ecological Aspects of Ichthyotoxicology), Moscow, 1987.

  12. Thomas, S., Fievet, B., Claireaux, G., and Motais, R., Adaptive respiratory responses of trout to acute hypoxia, I. Effects of water ionic composition on blood acid-base status response and gill morphology, Respir. Physiol., 1988, vol. 74, no. 1, pp. 77–89.

    Article  CAS  PubMed  Google Scholar 

  13. Bartels, H., Gourlet, V., Perramon, A., Pierre, M., and Stupfel, M., Biological parameters in Japanese quail genetically selected for tolerance or sensitivity to an acute hypoxic survival, Aviat. Space Environ. Med., 1985, vol. 56, no. 10, pp. 976–984.

    CAS  PubMed  Google Scholar 

  14. Bhattacharya, S., Pal, K., Jain, S., Chatterjee, S.S., and Konar, J., Surgical site infection by methicillin resistant Staphylococcus aureus-on decline? J. Clin. Diagn. Res., 2016, vol. 10, no. 9, pp. DC32–DC36.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hochachka, P.W., Gunga, H.C., and Kirsch, K., Our ancestral physiological phenotype: an adaptation for hypoxia tolerance and for endurance performance? Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 4, pp. 1915–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nurmukhambetov, A.N. and Riabtseva, T.A., Resistance of the myocardium to hypoxia and reoxygenation in rats of different genetic lines, Fiziol. Zh. SSSR im. I.M. Sechenova, 1987, vol. 73, no. 10, pp. 1345–1348.

    CAS  PubMed  Google Scholar 

  17. Kutsenko, S.A., Osnovy toksikologii (Fundamentals of Toxicology), St. Petersburg, 2002.

  18. Regal, J.F., Role of the complement system in pulmonary disorders, Immunopharmacol., 1997, vol. 38, no. 1–2, pp. 17–25.

    Article  CAS  Google Scholar 

  19. Belenky, D.A., Standaert, T.A., and Woodrum, D.E., Maturation of hypoxic ventilatory response of the newborn lamb, J. Appl. Physiol. Respir. Environ. Exerc. Physiol., 1979, vol. 47, no. 5, pp. 927–930.

    CAS  PubMed  Google Scholar 

  20. Borle, K.J., Pfoh, J.R., Boulet, L.M., Abrosimova, M., Tymko, M.M., Skow, R.J., Varner, A., and Day, T.A., Intra-individual variability in cerebrovascular and respiratory chemosensitivity: can we characterize a chemoreflex “reactivity profile”? Respir. Physiol. Neurobiol., 2017, vol. 242, pp. 30–39.

    Article  PubMed  Google Scholar 

  21. Ainslie, P.N., Kolb, J.C., Ide, K., and Poulin, M.J., Effect of five nights of normobaric hypoxia on cardiovascular responses to acute isocapnic hypoxia in humans: relationship to ventilatory chemosensitivity, Ergonomics, 2005, vol. 48, no. 11–14, pp. 1523–1534.

    Article  PubMed  Google Scholar 

  22. Smotherman, W.P. and Robinson, S.R., Stereotypic behavioral response of rat fetuses to acute hypoxia is altered by maternal alcohol consumption, Am. J. Obstet. Gynecol., 1987, vol. 157, pt.1, pp. 982–986.

    Article  CAS  PubMed  Google Scholar 

  23. López-Barneo, J., Ortega-Sáenz, P., González-Rodríguez, P., Fernández-Agüera, M.C., Macías, D., Pardal, R., and Gao, L., Oxygen-sensing by arterial chemoreceptors: mechanisms and medical translation, Mol. Asp. Med., 2016, vol. 47–48, pp. 90–108.

    Article  CAS  Google Scholar 

  24. Daniyarov, S.B. and Zarifyan, A.G., Vysokogorye i vegetativnaya nervnaya sistema (Highlands and Autonomic Nervous System), Tashkent, 1977.

  25. Westerlind, A., Larsson, L.E., Häggendal, J., and Ekstrom-Jodal, B., Effects of arterial hypoxia and beta-adrenoceptor blockade on cerebral blood flow and oxygen uptake following E. coli endotoxin in dogs, Acta Anaesthesiol. Scand., 1995, vol. 39, no. 4, pp. 472–478.

    Article  CAS  PubMed  Google Scholar 

  26. Stípek, S., Novák, L., Vinklár, P., Trojan, S., and Stastny, F., Plasma xanthine oxidase activity correlates with the tolerance to severe hypoxia in different species, Physiol. Bohemoslov., 1988, vol. 37, no. 2, pp. 107–113.

    PubMed  Google Scholar 

  27. Endoh, H., Honda, T., Ohashi, S., and Shimoji, K., Naloxone improves arterial blood pressure and hypoxic ventilatory depression, but not survival, of rats during acute hypoxia, Crit. Care Med., 2001, vol. 29, no. 3, pp. 623–627.

    Article  CAS  PubMed  Google Scholar 

  28. Lukyanova, L.D., Romanova, V.E., and Chernobaeva, G.N., Features of oxidative phosphorylation in brain mitochondria of rats with different sensitivity to oxygen insufficiency, Byull. Eksp. Biol. Med., 991, vol. 112, pp. 49–51.

  29. Berezovsky, V.A., Boiko, K.A., Klimenko, K.S., Levchenko, M.N., Naxarenko, A.I., and Shumitskaya, N.M., Individual reactions of animals to oxygen insufficiency, Gipoksiya i individual’nye osobennosti reaktivnosti (Hypoxia and Individual Features of Reactivity), Berezovsky, V.A., Ed., Kiev, 1978.

  30. Gershan, W.M., Jacobi, M.S., and Thach, B.T., Maturation of cardiorespiratory interactions in spontaneous recovery from hypoxic apnea (autoresuscitation), Pediatr. Res., 1990, vol. 28, no. 2, pp. 87–93.

    CAS  PubMed  Google Scholar 

  31. Rezende, E.L., Garland, T. Jr., Chappell, M.A., Malisch, J.L., and Gomes, F.R., Maximum aerobic performance in lines of Mus selected for high wheel-running activity: effects of selection, oxygen availability and the mini-muscle phenotype, J. Exp. Biol., 2006, vol. 209, pt. 1, pp. 115–127.

    Article  PubMed  Google Scholar 

  32. Brutsaert, T., Why are high altitude natives so strong at high altitude? Nature vs. nurture: genetic factors vs. growth and development, Adv. Exp. Med. Biol., 2016, vol. 903, pp. 101–112.

    Article  CAS  PubMed  Google Scholar 

  33. Friedl, K.E., Grate, S.J., Proctor, S.P., Ness, J.W., Lukey, B.J., and Kane, R.L., Army research needs for automated neuropsychological tests: monitoring soldier health and performance status, Arch. Clin. Neuropsychol., 2007, suppl. 1, pp. S7–14.

  34. Burykh, E.A., Correlations between human cognitive performance and blood flow reactions under normoxia and hypoxia, Russ. J. Physiol., 2017, vol. 103, no. 9, pp. 1042–1056.

    Google Scholar 

  35. West, J.B., Tolerance to severe hypoxia: lessons from Mt. Everest, Acta Anaesthesiol. Scand., 1990, suppl. 94, pp. 18–23.

    Article  Google Scholar 

  36. Burykh, E.A. and Soroko, S.I., Reflection of reserves of the brain energy mechanisms in cerebral blood flow dynamics in human under acute hypoxia, Russ. J. Physiol., 2014, vol. 11, pp. 1310–1323.

    Google Scholar 

  37. Lukyanova, L.D., Chernobaeva, G.N., and Romanova, V.E., Effects of intermittent hypoxia on oxidative phosphorylation in brain mitochondria of rats with different resistance to oxygen insufficiency, Byull. Eksp. Biol. Med., 1995, vol. 120, no. 12, pp. 572–575.

    CAS  Google Scholar 

  38. Hochachka, P.W., Metabolic arrest, Intensive Care Med., 1986, vol. 12, no. 3, pp. 127–133.

    Article  CAS  PubMed  Google Scholar 

  39. Hochachka, P.W., Buck, L.T., Doll, C.J., and Land, S.C., Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 18, pp. 9493–9498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dudchenko, A.M. and Lukyanova, L.D., Trigger role of energy metabolism in a cascade of functional and metabolic violations under hypoxia, Problemy gipoksii: molekulyarnye, fiziologicheskie i meditsinskie aspekty (Problems of Hypoxia: Molecular, Physiological and Medical Aspects), Lukyanova, L.D. and Ushakova, I.B., Eds., Voronezh, 2004, pp. 51–83.

  41. Lu, G.W., Cui, X.Y., and Zhao, B.M., Alteration of oxygen consumption and energy metabolism during repetitive exposure of mice to hypoxia, Neurochem. Res., 1999, vol. 24, no. 5, pp. 625–628.

    Article  CAS  PubMed  Google Scholar 

  42. Masschelein, E., Van Thienen, R., Thomis, M., and Hespel, P., High twin resemblance for sensitivity to hypoxia, Med. Sci. Sports Exerc., 2015, vol. 47, no. 1, pp. 74–81.

    Article  CAS  PubMed  Google Scholar 

  43. Yuan, S.Z., Runold, M., and Lagercrantz, H., Adrenalectomy reduces the ability of newborn rats to gasp and survive anoxia, Acta Physiol. Scand., 1997, vol. 159, no. 4, pp. 285–292.

    Article  CAS  PubMed  Google Scholar 

  44. Kovalenko, E.A., Malkin, V.B., Katkov, A.Yu., Landukhova, N.F., and Gippenreiter, E.B., Fiziologiya cheloveka (Human Physiology in Highland Conditions), Gazenko, O.M., Ed., 1987, Moscow, pp. 232–264.

  45. Samoilov, M.O., Semenov, D.G., Tylkova, E.I., Rybnikova, E.A., Vataeva, L.A., Glushchenko, T.S., Stroev, S.A., and Miller, O.L., Molecular mechanisms of short- and long-term effects of hypoxic preconditioning, Problemy gipoksii: molekulyarnye, fiziologicheskie i meditsinskie aspekty (Problems of Hypoxia: Molecular, Physiological and Medical Aspects), Lukyanova, L.D. and Ushakova, I.B., Eds., Voronezh, 2004, pp. 297–397.

  46. Lu, G.W., Cui, X.Y., and Zhao, B.M., Alteration of oxygen consumption and energy metabolism during repetitive exposure of mice to hypoxia, Neurochem. Res., 1999, vol. 24, no. 5, pp. 625–628.

    Article  CAS  PubMed  Google Scholar 

  47. Routley, M.H., Nilsson, G.E., and Renshaw, G.M., Exposure to hypoxia primes the respiratory and metabolic responses of the epaulette shark to progressive hypoxia, Comp. Biochem. Physiol. A, 2002, vol. 131, no. 2, pp. 313–321.

    Article  Google Scholar 

  48. Gibson, O.R., Taylor, L., Watt, P.W., and Maxwell, N.S., Cross-Adaptation: heat and cold adaptation to improve physiological and cellular responses to hypoxia, Sports Med., 2017, vol. 47, pp. 1751–1768.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Thomas, S., Fievet, B., Claireaux, G., and Motais, R., Adaptive respiratory responses of trout to acute hypoxia, I. Effects of water ionic composition on blood acid-base status response and gill morphology, Respir. Physiol., 1988, vol. 74, no. 1, pp. 77–89.

    Article  CAS  PubMed  Google Scholar 

  50. Ushakov, I.B., Hypoxic mechanisms of combined effects, Problemy gipoksii: molekulyarnye, fiziologicheskie i meditsinskie aspekty (Problems of Hypoxia: Molecular, Physiological and Medical Aspects), Lukyanova, L.D. and Ushakova, I.B., Eds., Voronezh, 2004, pp. 297–397.

  51. Katkov, A.Yu., Antihypoxic effectiveness of alimentary fasting, Fiziol. Zh. SSSR im. I.M. Sechenova, 1982, vol. 68, no. 9, pp.1282–1286.

    PubMed  Google Scholar 

  52. Thomas, J.B. and Gilmour, K.M., Low social status impairs hypoxia tolerance in rainbow trout (Oncorhynchus mykiss), J. Comp. Physiol. B, 2012, vol. 182, no. 5, pp. 651–662.

    Article  CAS  PubMed  Google Scholar 

  53. Meerson, F., Pozharov, V., and Minyailenko, T., Supertolerance against hypoxia after preliminary adaptation to repeated stress, J. Appl. Physiol. (1985), 1994, vol. 76, no. 5, pp. 1856–1861.

    Article  CAS  Google Scholar 

  54. Casanova, J.P., Contreras, M., Moya, E.A., Torrealba, F., and Iturriaga, R., Effect of insular cortex inactivation on autonomic and behavioral responses to acute hypoxia in conscious rats, Behav. Brain Res., 2013, vol. 253, pp. 60–67.

    Article  PubMed  Google Scholar 

  55. Bignami, G., Selection for high rates and low rates of avoidance conditioning in the rat, Anim. Behav., 1965, vol. 13, no. 2, pp. 221–227.

    Article  CAS  PubMed  Google Scholar 

  56. Zhukov, D.A., Psikhogenetika stressa. Povedencheskie i endokrinnye korrelyaty geneticheskikh determinant stress-reaktivnosti pri nekontroliruemoi situatsii (Psychogenetics of Stress. Behavioral and Endocrine Correlates of Genetic Determinants of Stress Reactivity in Uncontrollable Situations), St. Petersburg, 1997.

  57. Boersma, G.J., Benthem, L., Dijk, G., and Scheurink, A.J., Individual variations in the (patho) physiology of energy balance, Physiol. Behav., 2011, vol. 103, pp. 89–97.

    Article  CAS  PubMed  Google Scholar 

  58. Poulsen, S.B., Jensen, L.F., Nielsen, K.S., Malte, H., Aarestrup, K., and Svendsen, J.C., Behaviour of rainbow trout Oncorhynchus mykiss presented with a choice of normoxia and stepwise progressive hypoxia, J. Fish Biol., 2011, vol. 79, no. 4, pp. 969–979.

    Article  CAS  PubMed  Google Scholar 

  59. Cook, D.G., Wells, R.M., and Herbert, N.A., Anaemia adjusts the aerobic physiology of snapper (Pagrus auratus) and modulates hypoxia avoidance behaviour during oxygen choice presentations, J. Exp. Biol., 2011, vol. 214, pt. 17, pp. 2927–2934.

    Article  PubMed  Google Scholar 

  60. Cook, D.G., Iftikar, F.I., Baker, D.W., Hickey, J., and Herbert, N.A., Low-O2 acclimation shifts the hypoxia avoidance behaviour of snapper (Pagrus auratus) with only subtle changes in aerobic and anaerobic function, J. Exp. Biol., 2013, vol. 216, pt. 3, pp. 369–378.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This review was written within the state assignment to Sechenov Institute of Evolutionary Physiology and Biochemistry; reg. no. AAAA-A18-118012290142-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Burykh.

Ethics declarations

All applicable international, national and institutional principles of handling and using experimental animals for scientific purposes were observed. This study did not involve human subjects as research objects.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2019, Vol. 55, No. 5, pp. 307–315.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burykh, E.A. The Problem of Assessing Individual Sensitivity and Tolerance to Hypoxia in Animals and Humans. J Evol Biochem Phys 55, 339–347 (2019). https://doi.org/10.1134/S0022093019050016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093019050016

Keywords

Navigation