Skip to main content
Log in

Principles of Evolution of the Excretory Organs and the System of Homeostasis

  • Problem Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The function of the excretory organs in metazoan invertebrates and vertebrates is aimed at maintaining homeostasis. Two patterns of the morpho-functional organization of these organs can be distinguished: I—a combination of ultrafiltration and subsequent reabsorption with partial secretion of substances, or II—only a secretion of molecules of a certain type. Here we substantiate the principle according to which in the type I organs the key role of the proximal tubule is to reabsorb fluid, which is ideal in terms of its solute composition and concentration, and to secrete a number of organic acids and bases, while the distal tubule is responsible for adjusting the composition of inorganic substances. Everything what does not meet these criteria is to be excreted. The type II organs (salt glands, aglomerular kidneys) are inherent to those animals whose kidneys do not ensure osmoregulation. During evolution, the mammalian kidney developed the mechanism which regulates the redistribution of fluid within the nephron: altered reabsorption of ions and water in the proximal segment can cause an influx of some additional fluid to the distal segment where the regulatory systems adjust the amount of reabsorbed substances. The central tendency in the evolution of the kidney in vertebrates, including humans, is to increase the rates of glomerular filtration and proximal reabsorption. A similarity between molecular mechanisms of transmembrane and transepithelial transport of substances has been revealed in the evolution of excretory organs, with distinctions concerning mainly the structure of the regulatory molecules and the intensity of urine formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vernadsky, V.I., Nachalo i vechnost zhizni (The Beginning and Eternity of Life), Moscow, 1989.

  2. Darwin, Ch., Proiskhozhdenie vidov putem estestvennogo otbora (The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life), St. Petersburg, 1991.

  3. Bernard, C., Leçons sur les phenomènes de la vie communs aux animaux et aux végetaux, Paris, 1878.

  4. Cannon, W.B., Organization for physiological homeostasis, Physiol. Rev., 1929, vol. 9, pp. 399–431.

    Article  Google Scholar 

  5. Barcroft, J., Osnovnye cherty arkhiektury fiziologicheskikh funktsii (Features in the Architecture of Physiological Function), Moscow–Leningrad, 1937.

  6. Natochin, Yu.V., Homeostasis, Usp. Fiziol. Nauk, 2017, vol. 48, no. 4, pp. 3–15.

    Google Scholar 

  7. Gamaley, Yu.V., Transportnaya sistema sosudistykh rastenii (Transport System of Vascular Plants), St. Petersburg, 2004.

  8. Guyton, A.C. and Hall, J.E., Meditsinskaya fiziologiya (Textbook of Medical Physiology), Moscow, 2008.

  9. Harari, Y.N., Kratkaya istoriya chelovechestva (Sapiens. A Brief History of Humankind), Moscow, 2016.

  10. Natochin, Yu.V., Integrity, Zh. Vyssh. Nerv. Deiat. im. I.P. Pavlova, 2018, vol. 68, no. 6, pp. 775–787.

    Google Scholar 

  11. Einstein, A., cit. by Markov, M., O edinstve i mnogoobrazii form materii v fizicheskoi kartine mira (On the Unity and Variety of Forms of Matter in Physical Picture of the World), Nauka i Zhizn, 1982, no. 7, pp. 3–10.

  12. Orbeli, L.A., Main tasks and methods of evolutionary physiology, Orbeli, L.A., Selected Works, vol. 1, 1961, pp. 59–68.

    Google Scholar 

  13. Diamond, J., Evolutionary physiology, The Logic of Life, eBoyd, C. A.R. and Noble, D., Eds., Oxford, 1993, pp. 89–111.

  14. Garland, T.J., and Carter, P.A., Evolutionary physiology, Annu. Rev. Physiol., 1994, vol. 56, pp. 579–621.

    Article  Google Scholar 

  15. Natochin, Y.V., Evolutionary physiology, J. Evol. Biochem. Physiol., 2017, vol. 53, no. 2, pp. 156–170.

    Article  CAS  Google Scholar 

  16. Prosser, C.L., Sravnitel’naya fiziologiya zhivotnykh (Comparative Animal Physiology), vol. 1, Moscow, 1977, pp. 177–240.

  17. Riegel, J.A., Comparative Physiology of Renal Excretion, Edinburgh, 1972.

  18. Polyansky, Yu.I., Integration mechanisms in protozoan cells, Vest. Leningr. Univ. Ser. Biol., 1975, iss. 3, no. 15, pp. 113–117.

  19. Koshtoyants, Kh.S., Osnovy sravnitel’noi fiziologii (Fundamentals of Comparative Physiology), pt. 1, Moscow—Leningrad, 1940.

  20. Dogel, V.A., Zoologiya bespozvonochnykh (Zoology of Invertebrates), Moscow, 1981.

  21. Beyenbach, K.W., Skaer, H., and Dow, J.A., The developmental, molecular, and transport biology of Malpighian tubules, Annu. Rev. Entomol., 2010, vol. 55, pp. 351–374.

    Article  CAS  Google Scholar 

  22. Zavarzin, A.A., Sravnitel’naya gistologiya: uchebnik (Comparative Histology: A Textbook), St. Peterburg, 2000.

  23. Ross, H., Ross, Ch., and Ross, J., Entomologiya (A Textbook of Entomology), Moscow, 1985.

  24. Beyenbach, K.W. and Piermarini, P.M., Transcellular and paracellular pathways of transepithelial fluid secretion in Malpighian (renal) tubules of the yellow fever mosquito Aedes aegypti, Acta Physiol. (Oxf.), 2011, vol. 202, no. 3, pp. 387–407.

    Article  CAS  Google Scholar 

  25. Natochin, Yu.V., Excretion, Fiziologiya pochki, Fiziologiya cheloveka: uchebnik (Renal Physiology, Human Physiology: A Textbook), Pokrovskij, V.M. and Korotko, G.F., Eds., Moscow, 2011, pp. 514–546.

  26. Alpern, R.J. and Hebert, S.C., Seldin and Giebisch’s The Kidney, Physiology and Pathophysiology, vol. 1, Amsterdam, 2008.

  27. Wander, A., Fiziologiya pochek (Renal Physiology), St. Petersburg, 2000.

  28. Peaker, M. and Linzell, J.L., Salt Glands in Birds and Reptiles, Cambridge, 1975.

  29. Marshall, E.K. and Smith, H.W., The glomerular development of the vertebrate kidney in relation to habitat, Biol. Bull., 1930, vol. 59, no. 2, pp. 135–153.

    Article  Google Scholar 

  30. Fels, L.M., Raguse-Degener, G., and Stolte, H., The archinephron of Myxine glutinosa L. (Cyclostomata), Structure and Function of the Kidney, Kinne, R.K.H., Ed., Comp. Physiol., Basel, 1989, vol. 1, pp. 73–102.

    Google Scholar 

  31. Möllendorff, W., Der Exkretionsapparat, Handb. der Mikroskopischen Anatomie des Menschen, 1930, Bd. 7, Berlin, pp. 197–328.

  32. Natochin, Yu.V., Ionoreguliruyushchaya funktsiya pochki (Ionoregulatory Function of the Kidney), Leningrad, 1976.

  33. Smith, H.W., From Fish to Philosopher, Boston, 1953.

  34. Carbrey, J.M. and Agre, P., Discovery of the aquaporins and development of the field, Handb. Exp. Pharmacol., 2009, vol. 190, pp. 3–28.

    Article  CAS  Google Scholar 

  35. Natochin, Yu.V., On the evolution of renal function and water—salt homeostasis, Adv. in Physiol. Research., McLennan, H., Ledsome, J.R., McIntosh, C.H.S., and Jones, D.R., Eds., 1987, New York, pp. 429–454.

  36. Grantham, J.J. and Wallace, D.P., Return of the secretory kidney, Am. J. Physiol., Renal Physiol., 2002, vol. 282, pp. F1–F9.

    Article  CAS  Google Scholar 

  37. Kravchinsky, B.D., Sovremennye osnovy fiziologii pochek (Modern Basics of Renal Physiology), Leningrad, 1958.

  38. Natochin, Yu.V., Glomerular filtration and proximal reabsorption in the evolution of the vertebrate kidney, Zh. Evol. Biokhim. Fiziol., 1972, vol. 8, no. 3, pp. 289–297.

    CAS  Google Scholar 

  39. Ginetsinsky, A.G., Fiziologicheskie mekhanizmy vodno-solevogo ravnovesiya (Physiological Mechanisms of Water—Salt Balance), Moscow—Leningrad, 1963.

  40. Dantzler, W.H., Comparative Physiology of the Vertebrate Kidney, Berlin, 1989.

  41. Smith, HW., The Kidney: Structure and Function in Health and Disease, New York, 1951.

  42. Boron, W.F., Acid-base transport by the renal proximal tubule, J. Am. Soc. Nephrol., 2006, vol. 17, pp. 2368–2382.

    Article  CAS  Google Scholar 

  43. Kutina, A.V., Marina, A.S., Shakhmatova, E.I., and Natochin, Y.V., Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic, Clin. Exp. Pharmacol. Physiol., 2013, vol. 40, pp. 510–517.

    Article  CAS  Google Scholar 

  44. Natochin, Yu.V., Kutina, A.V., Marina, A.S., and Shakhmatova, E.I., Stimulus for glucagon-like peptide 1 secretion in rats, Dokl. Akad. Nauk Biol. Sci., 2018, vol. 479, no. 5, pp. 593–596.

    Google Scholar 

  45. Marina, A.S., Kutina, A.V., Shakhmatova, E.I., Balbotkina, T.A., and Natochin, Yu.V., Stimulation of glucagon-like peptide-1 secretion by water loading in human, Dokl. Akad. Nauk Biol. Sci., 2014, vol. 459, no. 1, pp. 121–124.

    Google Scholar 

  46. Kutina, A.V., Marina, A.S., and Natochin, Yu.V., Effects of exenatide on glycemia and renal water and ion excretion differ in frogs and rats, J. Evol. Biochem. Physiol., 2016, vol. 52, no. 3, pp. 205–213.

    Article  CAS  Google Scholar 

  47. Goncharevskaya, O.A., Structural organization of nephrons in the kidney and proximal reabsorption in representatives of different vertebrate classes (according to microdissection and micropuncture studies), Zh. Evol. Biokhim. Fiziol., 1976, vol. 12, no. 2, pp. 113–119.

    Google Scholar 

  48. Natochin, Yu.V., Golosova, D.V., and Shakhmatova, E.I., A new functional role of oxytocin: participation in osmoregulation, Dokl. Akad. Nauk Biol. Sci., 2018, vol. 479, no. 6, pp. 712–715.

    Google Scholar 

  49. Natochin, Yu.V. and Kuznetsova, A.A., Nocturnal enuresis: correction of renal function by desmopressin and diclofenac, Pediatr. Nephrol., 2000, vol. 14, pp. 42–47.

    Article  CAS  Google Scholar 

  50. Weinstein, A., Sodium and chloride transport. Proximal nephron, Seldin and Giebisch’s The Kidney: Physiology and Pathophysiology, Alpern, R.J. and Hebert, S.C., Eds., vol. 1, 2008, Amsterdam, pp. 793–847.

  51. Harris, P.D., Regulation of function of a proximal tubule, Russ. J. Physiol., 1994, vol. 80, no. 7, pp. 28–34.

    CAS  Google Scholar 

  52. Alberts, B., Johnson, A., Levis, J., Raff, M., Roberts, K., and Walter, P., Molekulyarnaya biologiya kletki (Molecular Biology of the Cell), Moscow, 2013.

  53. Zimmer, C., Evolyutsiya. Triumf idei (Evolution. The Triumph of Idea), Moscow, 2018.

  54. Schmidt-Nielsen, B.M. and Mackay, W.C., Comparative physiology of electrolyte and water regulation, with emphasis on sodium, potassium, chloride, urea, and osmotic pressure, Clinical Disorders of Fluid and Electrolyte Metabolism, Maxwell, M.H. and Kleeman, C.R., Eds., 1972, New York, pp. 45–93.

  55. Dunson, WA., Control mechanisms in Reptilia, Mechanisms of Osmoregulation in Animals, Gilles, R., Ed., 1979, Chichester, pp. 273–322.

Download references

Funding

This work is supported by the Russian Scientific Foundation’s grant no. 18-15-00358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Natochin.

Ethics declarations

This study did not involve any human or animal subjects as research objects.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2019, Vol. 55, No. 5, pp. 348–359.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natochin, Y.V. Principles of Evolution of the Excretory Organs and the System of Homeostasis. J Evol Biochem Phys 55, 398–410 (2019). https://doi.org/10.1134/S0022093019050077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093019050077

Keywords

Navigation