Skip to main content
Log in

Spatio-Temporal Prediction of Ionospheric Total Electron Content Using an Adaptive Data Fusion Technique

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The ionosphere, a part of upper atmosphere, plays an important role on the propagation of radio waves. Hence, understanding, remote sensing and monitoring of the ionospheric phenomena can provide a compressive description to the physical process that are affected by the behavior of ionosphere. One of descriptive quantity of ionosphere is Total Electron Content (TEC). TEC is the total number of electrons integrated between two points and characterized by observing carrier phase delays of received radio signals transmitted from satellites located above the ionosphere, often using Global Positioning System (GPS) satellites. In this study, TEC is predicted from TEC estimates obtained from GPS network located in Turkey in space and time using an Adaptive Data Fusion Technique (ADF). It is observed that characteristic distributions of the predict TEC and original TEC values are similar with each other. Mean Square Errors are less than 4 TECU. ADF has a high performance for the spatio-temporal prediction when the results are compared with the techniques used in the related studies in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Afraimovich, E.L., Astafyeva, E.I., Demyanov, V.V., et al., A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena, J. Space Weather Space Clim., 2013, vol. 3, no. A27, pp. 1–19.

    Article  Google Scholar 

  2. Arikan, F., Erol, C.B., and Arikan, O., Regularized estimation of vertical total electron content from Global Positioning System data, J. Geophys. Res., 2003, vol. 118, no. A12, pp. 1469–1480.

    Article  Google Scholar 

  3. Arikan, F., Erol, C.B., and Arikan, O., Regularized estimation of vertical total electron content from GPS data for a desired time period, Radio Sci., 2004, vol. 39, no. 6, pp. 1–10.

    Article  Google Scholar 

  4. Arikan, F., Arikan, O., and Erol, C.B., Regularized estimation of TEC from GPS data for certain midlatitude stations and comparison with the IRI model, Adv. Space Res., 2007, vol. 39, no. 5, pp. 867–874.

    Article  Google Scholar 

  5. Arikan, F., Nayir, H., Sezen, U., and Arikan, O., Estimation of single station interfrequency receiver bias using GPS-TEC, Radio Sci., 2008, vol. 43, no. 4, pp. 1–13.

    Article  Google Scholar 

  6. Arikan, F., Arikan, O., Sezen, U., et al., Space–time interpolation and automatic mapping of TEC using TNPGN-Active, 30th URSI General Assembly and Scientific Symposium, IEEE, 2011.

  7. Astafyeva, H. and Heki, K., Vertical TEC over seismically active region during low solar activity, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 13, pp. 1643–1652.

    Article  Google Scholar 

  8. Benaskeur, A.R. and Rhéaume, F., Adaptive data fusion and sensor management for military applications, Aerosp. Sci. Technol., 2007, vol. 11, pp. 327–338.

    Article  Google Scholar 

  9. Brunini, C. and Azpilicueta, F., GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions, J. Geod., 2010, vol. 84, pp. 293–304.

    Article  Google Scholar 

  10. Calais, E. and Minster, J.B., GPS detection of ionospheric perturbations following the January 17, 1994, Northridge Earthquake, Geophys. Res. Lett., 1995, vol. 22, pp. 1045–1048.

    Article  Google Scholar 

  11. Cander, Lj.R., Towards forecasting and mapping ionospheric space weather under cost actions, Adv. Space Res., 2003, vol. 31, no. 4, pp. 957–964.

    Article  Google Scholar 

  12. Deviren, M.N., Arikan, F., and Arikan, O., Spatio–temporal interpolation of total electron content using a GPS network, Radio Sci., 2013, vol. 48, pp. 302–309.

    Article  Google Scholar 

  13. Erken, F., Oksuztepe, E., and Kurum, H., Online adaptive decision fusion based torque ripple reduction in permanent magnet synchronous motor, IET Electr. Power Appl., 2016, vol. 10, no. 3, pp. 189–196.

    Article  Google Scholar 

  14. Erturk, O., Arikan, O., and Arikan, F., Tomographic reconstruction of the ionospheric electron density as a function of space and time, Adv. Space Res., 2009, vol. 43, no. 11, pp. 1702–1710.

    Article  Google Scholar 

  15. García Rigo, A., Monte, E., Hernández Pajares, M., et al., Global prediction of the vertical total electron content of the ionosphere based on GPS data, Radio Sci., 2011, vol. 46, pp. 1–13.

    Article  Google Scholar 

  16. Gunay, O., Toreyin, B.U., Kose, K., and Cetin, A.E., Entropy-functional based online adaptive decision fusion framework with application to wildfire detection in video, IEEE Trans. Image Process., 2012, vol. 21, no. 5, pp. 2853–2865.

    Article  Google Scholar 

  17. Habarulema, J.B., Mckinnell, L.A., and Opperman, D.L., Regional GPS TEC modeling: Attempted spatial and temporal extrapolation of TEC using neural networks, J. Geophys. Res., 2011, vol. 116, pp. 1–14.

    Article  Google Scholar 

  18. Haykin, S. and Widrow, B., Least-Mean-Square Adaptive Filters, John Wiley & Sons, 2003.

    Book  Google Scholar 

  19. Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., Global Positioning System: Theory and Practice, Wien: Springer, 1992.

    Book  Google Scholar 

  20. Hong, L., Adaptive data fusion, Proceedings of IEEE International Conference on Systems, Man and Cybernetics, IEEE, 1991.

  21. Iijima, B.A., Harris, I.L., Ho, C.M., et al., Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data, J. Atmos. Sol.-Terr. Phys., 1999, vol. 61, pp. 1205–1218.

    Article  Google Scholar 

  22. Karaman, Ö.A., Erken, F., and Cebeci, M., Decreasing harmonics via three phase parallel active power filter using online adaptive harmonic injection algorithm, Teh. Vjesn., 2018, vol. 25, pp. 157–164.

    Google Scholar 

  23. Karatay, S., Arikan, F., and Arikan, O., Investigation of TEC variability due to seismic and geomagnetic disturbances in the ionosphere, Radio Sci., 2010, vol. 45, pp. 1–12.

    Article  Google Scholar 

  24. Karatay, S., Cinar, A., and Arikan, F., Ionospheric responses during equinox and solstice periods over Turkey, Adv. Space Res., 2017, vol. 60, no. 9, pp. 1958–1967.

    Article  Google Scholar 

  25. Kelly, M.C., The Earth’s Ionosphere Plasma Physics and Electrodynamics, Academic, 2009.

    Google Scholar 

  26. Kim, B.-Ch. and Tinin, M.V., Effect of ionospheric irregularities on accuracy of dual-frequency GPS systems, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 2, pp. 238–243.

  27. Klein, A.L., Sensor and Data Fusion Concepts and Applications, SPIE Optical Engineering Press, 1993.

    Google Scholar 

  28. Kouris, S.S., Polimeris, K.V., and Cander, L.R., Specifications of TEC variability, Adv. Space Res., 2005, vol. 37, no. 5, pp. 983–1004.

    Article  Google Scholar 

  29. Llinas, J. and Singh, T., Adaptive data fusion processing: thoughts and perspectives, Thirty-Second Asilomar Conference on Signals, Systems and Computers, IEEE, 1998.

  30. Liperovskya, V.A., Pokhotelov, O.A., Meister, C.V., and Liperovskaya, E.V., Physical models of coupling in the lithosphere–atmosphere–ionosphere system before earthquakes, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 6, pp. 795–806.

  31. Liu, J.Y., Chuo, Y.J., Shan, S.J., et al., Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements, Ann. Geophys., 2004, vol. 22, pp. 1585–1593.

    Article  Google Scholar 

  32. Mannucci, A.J., Wilson, B.D., Yuan, D.N., et al., A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci., 1998, vol. 33, no. 3, pp. 565–582.

    Article  Google Scholar 

  33. McNamara, L.F., Radio Amateurs Guide to the Ionosphere, Krieger, 1994.

    Google Scholar 

  34. Nayir, H., Arikan, F., Arikan, O., and Erol, C.B., Total electron content estimation with Reg-Est, J. Geophys. Res., 2007, vol. 112, no. A11, pp. 1–11.

    Article  Google Scholar 

  35. Perevalova, N.P., Polyakova, A.S., and Zalizovski, A.V., Diurnal variations of the total electron content under quiet helio-geomagnetic conditions, J. Atmos. Sol. Terr. Phys., 2010, vol. 72, pp. 997–1007.

    Article  Google Scholar 

  36. Polekh, N.M., Pirog, O.M., Voeikov, S.V., et al., Ionospheric disturbances in the east-Asian region during the geomagnetic period in November 2004, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 5, pp. 593–602.

  37. Pulinets, S.A., Ouzunov, D., Ciraolo, L., et al., Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003, Ann. Geophys., 2006, vol. 24, pp. 835–849.

    Article  Google Scholar 

  38. Rishbeth, H., and Gariott, O.K., Introduction to Ionospheric Physics, Academic, 1969.

    Google Scholar 

  39. Seemala, G.K., GPS-TEC Analysis Application, Indian Institute of Geomagnetism, 2017.

    Google Scholar 

  40. Sezen, U., Arikan, F., Arikan, O., et al., Online automatic near-real time estimation of GPS-TEC: IONOLAB-TEC, Space Weather, 2013, vol. 11, no. 5, pp. 297–305.

    Article  Google Scholar 

  41. Teunissen, P.J.G. and Odijk, D., Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution, J. Geod., 2003, vol. 76, nos. 9–10, pp. 523–535.

    Article  Google Scholar 

  42. Troitsky, B.V., Ortikov, M.Y., Lobanov, K.A., et al., Ionospheric support of HF radiocommunication using maps of total electron content, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 3, pp. 413–418.

  43. Tulunay, E., Senalp, E.T., Cander, L.R., et al., Development of algorithms and software for forecasting, nowcasting and variability of TEC, Ann. Geophys., 2004, vol. 47, nos. 2–3, pp. 1201–1214.

    Google Scholar 

  44. Tuna, H., Arikan, O., and Arikan, F., Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT, Radio Sci., 2015, vol. 50, pp. 1062–1075.

    Article  Google Scholar 

  45. Wu, S., Li, J., Zeng, X., and Bi, Y., Adaptive data fusion methods in information retrieval, J. Assoc. Inf. Sci. Technol., 2014, vol. 65, no. 10, pp. 2048–2061.

    Article  Google Scholar 

  46. Yasyukevich, Yu.Y., Mylnikova, A.A., and Polyakova, A.S., Estimating the total electron content absolute value from the GPS/GLONASS data, Results Phys., 2015, vol. 5, pp. 32–33.

    Article  Google Scholar 

  47. Zhukov, A., Sidorov, D., Mylnikova, A., and Yasyukevich, Y., Machine learning methodology for ionosphere total electron content nowcasting, Int. J. Artif. Intell., 2018, vol. 16, no. 1, pp. 144–157.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The GIM-TEC, Satellite DCB and ephemeris data that are used in computation of IONOLAB-TEC are obtained from IGS Analysis Center of Jet Propulsion Laboratory (JPL) at (ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex). TNPGN-Active RINEX data set is made available to IONOLAB group for TUBITAK 109E055 project. This data set can be accessed by the permission from TUBITAK and General Command of Mapping of Turkish Army (http://www.hgk.msb.gov.tr/). The authors are grateful to anonymous Reviewers for their comments and contributions, which have been very helpful and constructive in improving the paper. Finally, the authors wish to thank IONOLAB group and Prof. Dr. Feza Arikan for personal communication on IONOLAB-TEC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faruk Erken, Secil Karatay or Ali Cinar.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faruk Erken, Karatay, S. & Cinar, A. Spatio-Temporal Prediction of Ionospheric Total Electron Content Using an Adaptive Data Fusion Technique. Geomagn. Aeron. 59, 971–979 (2019). https://doi.org/10.1134/S001679321908005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679321908005X

Navigation