Skip to main content
Log in

Evolution of the Large-Scale Geomagnetic Field over the Last 12 000 Years

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract—The ERDA and IGRF-12 geomagnetic field models are used to study the behavior of Earth’s large-scale magnetic field. The unusualness of the modern field’s behavior is studied from the viewpoint of the appearance of a new reversal. Estimates are given for the change in energy of the potential magnetic field on the Earth’s surface and of the liquid core, as well as Joule dissipation in the liquid core over 12 000 years. Both values increase sharply for the modern field, which is associated with an increase in the resolution of observations. Various methods for describing geomagnetic field reversals are considered. It is shown that the estimate for the duration of the reversal may depend on the method. It is demonstrated how erroneous reversal predictions may be, based on short time series, in particular, over the last century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Anufriev, A. and Sokoloff, D., Fractal properties of geodynamo models, Geophys. Astrophys. Fluid Dyn., 1994, vol. 74, pp. 207–218.

    Article  Google Scholar 

  2. de Boor, C., A Practical Guide to Splines, New York: Springer, 1978; Moscow: Radio i svyaz', 1985.

  3. Braginskii, S.I., Magnetic waves in the Earth’s core, Geomagn. Aeron., 1967, vol. 7, pp. 1050–1062.

    Google Scholar 

  4. Burakov, K.S., Galyagin, D.K., Nachasova, I.E., Reshetnyak, M.Yu., Sokolov, D.D., and Frick, P.G., Wavelet analysis of geomagnetic field intensity for the past 4000 years, Izv.,Phys. Solid Earth, 1998, vol. 34, no. 9, pp. 773–778.

    Google Scholar 

  5. Christensen, U.R. and Tilgner, A., Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos, Nature, 2004, vol. 429, pp. 169–171.

    Article  Google Scholar 

  6. Christensen, U., Olson, P., and Glatzmaier, G.A., Numerical modelling of the geodynamo: A systematic parameter study, Geophys. J. Int., 1999, vol. 138, pp. 393–409.

    Article  Google Scholar 

  7. Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton, B., Woods, A., Ridley, V., Maus, S., and Thomson, A., The US/UK World Magnetic Model for 2015–2020, NOAA National Geophysical Data Center Tech. Rep., 2015.

    Google Scholar 

  8. Clement, B.M. and Kent, D.V., A comparison of two sequential geomagnetic polarity transitions (upper Olduvai and lower Jaramillo) from the Southern Hemisphere, Phys. Earth Planet. Int., 1985, vol. 39, pp. 301–313.

    Article  Google Scholar 

  9. Coe, R.S. and Glatzmaier, G.A., Symmetry and stability of the geomagnetic field, Geophys. Res. Lett., 2006, vol. 33, no. 21, L21311-1-5.

    Article  Google Scholar 

  10. Constable, C. and Korte, M., Is Earth’s magnetic field reversing?, Earth Planet. Sci. Lett., 2006, vol. 246, pp. 1–16.

    Article  Google Scholar 

  11. Frick, P.G., Turbulentnost’: modeli i podkhody (Turbulence: Approaches and Models), Moscow–Izhevsk: RKhD, 2010.

  12. Gradstein, F.M., Ogg, J.G., Schmitz, M., and Ogg, G., The Geologic Time Scale 2012, Boston: Elsevier, 2012.

    Google Scholar 

  13. Gubbins, D., Can the Earth’s magnetic field be sustained by core oscillations?, Geophys. Res. Lett., 1975, vol. 2, pp. 409–412.

    Article  Google Scholar 

  14. Gubbins, D. and Herrero-Bervera, E., Encyclopedia of Geomagnetism and Paleomagnetism, Dordrecht: Springer, 2007.

    Book  Google Scholar 

  15. Gubbins, D., Jones, A.L., and Finlay, C.C., Fall in Earth’s magnetic field is erratic, Science, 2006, vol. 312, pp. 900–902.

    Article  Google Scholar 

  16. Hulot, G. and Bouligand, C., Statistical palaeomagnetic field modelling and symmetry considerations, Geophys. J. Int., 2005, vol. 161, pp. 591–602.

    Article  Google Scholar 

  17. Hulot, G. and Le Mouël, J.L., A statistical approach to the Earth’s main magnetic field, Phys. Earth Planet. Int., 1994, vol. 82, pp. 167–183.

    Article  Google Scholar 

  18. Jacobs, J.A., Reversals of the Earth’s Magnetic Field, Cambridge: Cambridge University Press, 1994.

    Book  Google Scholar 

  19. Khokhlov, A.V., Simulation of secular geomagnetic variations. Principles and implementation, Geofiz. Issled., 2012, vol. 13, pp. 50–61.

    Google Scholar 

  20. Kono, M. and Tanaka, H., Mapping the Gauss coefficients to the pole and the models of paleosecular variation, J. Geomagn. Geoelectr., 1995, vol. 47, pp. 115–130.

    Article  Google Scholar 

  21. Korte, M., Constable, C., Donadini, F., and Holme, R., Reconstructing the Holocene geomagnetic field, Earth Planet. Sci. Lett., 2011, vol. 312, pp. 497–505.

    Article  Google Scholar 

  22. Krause, F. and Rädler, K.-H., Mean-Field Magnetohydrodynamics and Dynamo Theory, Oxford: Pergamon, 1980; Moscow: Mir, 1984.

  23. Laj, C. and Kissel, C., An impending geomagnetic transition? Hints from the path, Front. Earth Sci., 2015, vol. 3, pp. 1–10.

    Article  Google Scholar 

  24. Lowes, F.J., Spatial power spectrum of the main geomagnetic field, Geophys. J. R. Astron. Soc., 1974, vol. 36, pp. 717–725.

    Article  Google Scholar 

  25. Mauersberger, P., Das Mittel der Energiedichte des geomagnetischen Hauptfeldes an der Erdoberflache und seine säkulare Änderung, Gerlands Beitr. Geophys., 1956, vol. 65, pp. 207–215.

    Google Scholar 

  26. Moffatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge: Cambridge Univ. Press, 1978; Moscow: Mir, 1980.

  27. Parkinson, W.D., Introduction to Geomagnetism, Elsevier, 1983; Moscow: Mir, 1986.

  28. Petrova, G.N., Nechaeva, T.B., and Pospelova, G.A., Kharakternye izmeneniya geomagnitnogo polya v proshlom (Characteristic Changes in the Geomagnetic Field in the Past), Moscow: Nauka, 1992.

  29. Poletti, W., Biggin, A.J., Trindade, R.I., Hartmann, G.A., and Terra-Nova, F., Continuous millennial decrease of the Earth’s magnetic axial dipole, Phys. Earth Planet. Int., 2018, vol. 274, pp. 72–86.

    Article  Google Scholar 

  30. Reshetnyak, M.Yu. and Hejda, P., Heat flux modulation in Domino dynamo model, Open J. Geol., 2013, vol. 3, pp. 55–59.

    Article  Google Scholar 

  31. Reshetnyak, M.Yu. and Sokolov, D.D., Geomagnetic field intensity and suppression of helicity in the geodynamo, Izv.,Phys. Solid Earth, 2003, vol. 39, no. 9, pp. 774–777.

    Google Scholar 

  32. Roberts, P.H., Jones, C.A., and Calderwood, A.R., Energy fluxes and ohmic dissipation in the Earth’s core, Earth’s Core and Lower Mantle, Jones, C.A., Soward, A.M., and Zhang, K., Eds., Taylor & Francis, 2003, pp. 100–129.

    Google Scholar 

  33. Sagnotti, L., Scardia, G., Giaccio, B., Liddicoat, J.C., Nomade, S., Renne, P.R., and Sprain, C.J., Extremely rapid directional change during Matuyama–Brunhes geomagnetic polarity reversal, Geophys. J. Int., 2014, vol. 199, pp. 1110–1124.

    Article  Google Scholar 

  34. Shao, J.-C., Fuller, M., Tanimoto, T., Dunn, J.R., and Stone, D.B., Spherical harmonic analyses of paleomagnetic data: The time-averaged geomagnetic field for the past 5 Myr and the Brunhes–Matuyama reversal, J. Geophys. Res.: Solid Earth, 1999, vol. 104, pp. 5015–5030.

    Article  Google Scholar 

  35. Sobko, G.S., Zadkov, V.N., Sokolov, D.D., and Trukhin, V.I., Geomagnetic reversals in a simple geodynamo model, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 2, pp. 254–260.

  36. Thébault, E., Finlay, C.C., Beggan, C.D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., et al., International geomagnetic reference field: the 12th generation, Earth Planets Space, 2015, vol. 67, id 79.

  37. Vainshtein, S.I., Zel’dovich, Ya.B., and Ruzmaikin, A.A., Turbulentnoe dinamo v astrofizike (Turbulent Dynamo Astrophysics), Moscow: Nauka, 1980.

  38. Valet, J.-P., Time variations in geomagnetic intensity, Rev. Geophys., 2003, vol. 41, no. 1, id 1004, pp. 4-1–4-44.

  39. Ziegler, L.B. and Constable, C.G., Testing the geocentric axial dipole hypothesis using regional paleomagnetic intensity records from 0 to 300 ka, Earth Planet. Sci. Lett., 2015, vol. 423, pp. 48–56.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks V.E. Pavlov for his attention to the work.

Funding

The study was supported by the Russian Science Foundation (grant no. 19-47-04110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Reshetnyak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetnyak, M.Y. Evolution of the Large-Scale Geomagnetic Field over the Last 12 000 Years. Geomagn. Aeron. 60, 121–130 (2020). https://doi.org/10.1134/S0016793220010119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220010119

Navigation