Skip to main content
Log in

Global Metallogeny of Tantalum Through Geological Time

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The global distribution of tantalum deposits and their resources on the geological time scale is analyzed. The analysis is based on the data for 65 deposits of the world with a resource estimate from 2000 t of Ta2O5, which are classified into five types: pegmatitic, granitic, alkaligranitic, foidic, and carbonatitic. Placers and ore-bearing weathering crusts are taken into account with their bedrock sources. The variable features of the global metallogeny of tantalum are represented based on the comparison of the supercontinent cycle. It is established that the most significant resources in terms of quantity are confined in the deposits of the Rodinian cycle, among which the foidic type objects are fully dominant. Then, the descending order for the total resources is the Pangean and Columbian cycles, in which the main shares in the resources belong to the deposits of the alkaligranitic and foidic types. The Kenoran cycle, which lags behind them in its quantitative estimate, stands out in tantalum metallogeny by a monotype nature: only pegmatitic objects have created its resource potential. The current Amasian cycle is in the last place with respect to the total quantity of tantalum resources, which is explained to a great extent by its incompleteness. The resources of this cycle are distributed between the objects of the alkaligranitic, granitic, and pegmatitic types in comparable shares. It is noted that, due to their mineralogical features, the deposits of pegmatitic and granitic types make it possible to obtain the highest-quality concentrates and they are, therefore, of prime interest for tantalum extraction. The deposits of the pegmatitic types are known in all the cycles, while the deposits of the granitic type are known only in the Pangean and Amasian cycles. In total, they contain only one fifth of the estimated tantalum resources, and their major share accounts for the Kenoran and Pangean cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abushkevich, V.S. and Syritso, L.F., Izotopno-geokhimicheskaya model' formirovaniya Li-F granitov Orlovskogo massiva v Vostochnom Zabaikal’e (Isotope-Geochemical Model of the Formation of Li–F Granites of the Orlovka Massif in Eastern Transbaikalia), St. Petersburg: Nauka, 2007.

  2. Afanas’ev, B.V., Mineral’nye resursy shchelochno-ul’traosnovnykh massivov Kol’skogo poluostrova (Mineral Resources of Alkaline–Ultrabasic Massifs of the Kola Peninsula), St. Petersburg: “Roza vetrov”, 2011.

  3. Aleinikoff, J.N. and Stoeser, D.B., Zircon morphology and U-Pb geochronology of seven metaluminous and peralkaline post-orogenic granite complexes of the Arabian Shield, Kingdom of Saudi Arabia, USGS Open-File Report, 1988, pp. 88–60.

  4. Alenicheva, A.A., Saltykova, T.E., Matukov, D.I., Tolmacheva, E.V., Lokhov, K.I., Kapitonov, I.N., and Presnyakov, S.L., Geochronology of endogenic events in Primorye territory structures based on SHRIMP-dating, 4th SHRIMP Workshop, Saint Petersburg, Russia,2008, Abstract Volume, St. Peterburg: VSEGEI, 2008, pp. 17–18.

  5. Alymova, N.V. and Vladykin, N.V., Ore potential of rare-metal granites of the Zashikhin massif (Irkutsk oblast) and minerals concentrating Ta, Nb, Th, Zr, and TR, Izv. Irkutsk. Gos. Univ., Ser. Nauki o Zemle, 2018, vol. 25, pp. 15–29.

  6. Annikova, I.Yu., Vladimirov, A.G., Smirnov, S.Z., and Gavryushkina, O.A., Geology and mineralogy of the Alakha spodumene granite porphyry deposit, Gorny Altai, Russia, Geol. Ore Deposits, 2016, vol. 58, no. 5, pp. 404–426.

    Article  Google Scholar 

  7. Arkhangel’skaya, V.V., Ryabtsev, V.V., Shuriga, T.N., Geological structure and mineralogy of the tantalum deposits of Russia, Mineral’noe syr’e (Mineral Raw Material), Moscow: VIMS, 2012.

    Google Scholar 

  8. Arkhangel’skaya, V.V., Ryabtsev, V.V., and Shuriga, T.N., Prediction-geological models of the deposits and their applied significance (ferrous, non-ferrous metals, energegtic and non-ore raw material), Tantalovye rudy. Mineral’noe syr’e, seriya metodicheskaya (Tantalum Ores. Mineral Raw Materials. Methodical Series) Moscow: VIMS, 2010, no. 8.

  9. Arzamastsev A. A. and Fu-Yuan Wu, U–Pb geochronology and Sr–Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola Province, Petrology, 2014, vol. 22, no. 5, pp. 462–479.

    Article  Google Scholar 

  10. Ashwal, L.D., Armstrong, R.A., Roberts, R.J., Schmitz, M.D., Corfu, F., Hetherington, C.J., Burke, K., and Gerber, M., Geochronology of zircon megacrysts from nepheline-bearing gneisses as constraints on tectonic setting: implications for resetting of the U-Pb and Lu-Hf isotopic systems, Contrib. Mineral. Petrol., 2007, vol. 153, pp. 389–403.

    Article  Google Scholar 

  11. Bastos, NetoA.C., Pereira, V.P., Ronchi, L.H., de Lima, E.F., and Frantz, J.C., The world class Sn, Nb, Ta, F (Y, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga mining district, Amazonas state, Brazil, Can. Mineral., 2009, vol. 47, pp. 1329–1357.

    Article  Google Scholar 

  12. Beskin, S.M., Geologiya i indikatornaya geokhimiya tantal-niobievykh mestorozhdenii Rossii (redkometal’nye granity) (Geology and Indicator Geochemistry of the Tantalum–Niobium Deposits of Russia. Rare-Metal Granites), Moscow: Nauchnyi mir, 2014.

  13. Beskin, S.M., Marin, Yu.B., Matias, V.V., and Gavrilova, S.P., What is a “rare-metal granite”? (history, terminology, types, and genesis) Zap. Ross. Mineral. O-va, 1999, no. 6, pp. 28-40.

  14. Beus, A.A., Severov, E.A., Sitnin, A.A., and Subbotin, K.D. Al’Bitizirovannye i greizenizirovannye granity (apogranity) (Albitized and Greisenized Granites (Apogranites)), Moscow: Izd-vo AN SSSR, 1962.

  15. Bogatikov, O.A., Kovalenko, V.I., Sharkov, E.V., Magmatizm, tektonika, geodinamika Zemli: svyaz' vo vremeni i v prostranstve (Magmatism, Tectonics, Geodynamics of the Earth: Spatiotemporal Relations), Tr IGEM RAN, Novaya seriya, 2010, vol. 3.

  16. Borodin, L.S. and Ginzburg, L.N., Geochemistry of peraluminous rare-metal leucogranites: evolutionary petrochemical trend and correlation between trace elements, Geochem. Int., 2002, vol. 40, no. 9, pp. 843–854.

    Google Scholar 

  17. Bortnikov, N.S., Volkov, A.V., Galyamov, A.L., Vikent’ev, I.V., Aristov, V.V., Lalomov, A.V., Murashov, K.Yu., Mineral resources of high-tech metals in Russia: state of the art and outlook, Geol. Ore Deposits, 2016, vol. 58, no. 2, pp. 83–103.

    Article  Google Scholar 

  18. Camacho, A., Baadsgaard, H., Davis, D.W., and Černý, P., Radiogenic isotope systematics of the Tanco and Silverleaf granitic pegmatites, Winnipeg river district, Manitoba, Can. Mineral., 2012, vol. 50, pp. 1775–1792.

    Article  Google Scholar 

  19. Černý, P., The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons, Rare-Element Geochemistry and Mineral Deposits, Linnen, L. and Samson, I.M., Eds., Geological Association of Canada Short Course Notes, 2005, vol. 17, pp. 127–158.

    Google Scholar 

  20. Che, X., Wu, F., Wang, R., Gerdes, A., Ji, W., Zhao, Z., Yang, J., and Zhu, Z., In situ U-Pb isotopic dating of columbite–tantalite by LA-ICP-MS, Ore Geol. Rev., 2015, vol. 65, no. 4, pp. 979–989.

  21. Chevychelov, V.Yu., Borodulin, G.P., and Zaraisky, G.P., Solubility of columbite, (Mn, Fe)(Nb, Ta)2O6, in granitoid and alkaline melts at 650–850°C and 30–400 MPa: an experimental investigation, Geochem. Int., 2010, vol. 48, no. 5, pp. 456–465.

    Article  Google Scholar 

  22. Chudy, T.C., The petrogenesis of the Fir carbonatite system, East-central British Columbia, Canada, Ph.D. Thesis. University of British Columbia, Vancouver, 2013, p. 560.

  23. Condie, K.C. and Aster, R.C., Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth, Precambrian Res., 2010, vol. 180, pp. 227–236.

    Article  Google Scholar 

  24. Condie, K.C. and Aster, R.C., Refinement of the supercontinent cycle with Hf, Nd and Sr isotopes, Geosci. Front., 2013, vol. 4, pp. 667–680.

    Article  Google Scholar 

  25. Costi, H.T., Dall’agnol, R., and Moura, C.A.V., Geology and Pb-Pb geochronology of Paleoproterozoic volcanic and granitic rocks of Pitinga Province, Amazonian Craton, northern Brazil, Int. Geol. Rev., 2000, vol. 42, no. (9), pp. 832–849.

    Article  Google Scholar 

  26. Cox, J.J., Ciuculescu, T., Goode, J.R., and Hains, D.H., Technical report on the Thor Lake project, Northwest Territories, Canada. Roscoe Postle Associates Inc., 2011. http://www.avalonraremetals.com/_resources/reports/RPA_ Avalon_Thor_Lake_NI_43-101_August_25_2011.pdf. (06.12.2018)

  27. Cunningham, L.D., Columbium (niobium) and tantalum, Minerals Yearbook, Volume I. Metals and Minerals. U.S. Geol. Surv., 2001, pp. 21.1–21.7. URL: https://minerals. usgs.gov/minerals/pubs/commodity/niobium/niobmyb01. pdf. (06.09.2018)

  28. D’yachkov, B.A., Geneticheskie tipy redkometall’nykh mestorozhdenii Kalba-Narymskogo poyasa. Ust’-Kamenogorsk: VKGTU, 2012.

  29. David, J. and Parent, M., Geochronologie U-Pb du projet Moyen-Nord. GEOTOP. Ministere des Ressources Naturelles du Quebec, 1997.

  30. DeBon, F., Afzali, H., LeFort, P., Sonet, J., and Zimmermann, J.L., Plutonic Rocs and Associations in Afghanistan: Topology, Age and Geodynomic Setting, Sciences de la Terre, Mem., 1987, vol. 49.

    Google Scholar 

  31. Dewaele, S., Hulsbosch, N., Cryns, Y., Boyce, A.J., Burgess, R., and Muchez, P., Geological setting and timing of the world-class Sn, Nb–Ta, and Li mineralization of Manono–Kitotolo (Katanga, Democratic Republic of Congo), Ore Geol. Rev., 2015, vol. 72, pp. 373–390.

    Article  Google Scholar 

  32. Dittrich, T., Seifert, T., Schulz, B., Hagemann, S., Gerdes, A., and Pfander, J., Geochronology of archean LCT pegmatites, Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia. SpringerBriefs in World Mineral Deposits, Cham: Springer, 2019, pp. 87–94.

    Book  Google Scholar 

  33. Doroshkevich, A.G., Veksler, I.V., Izbrodin, I.A., Ripp, G.S., Khromova, E.A., Posokhov, V.F., Travin, A.V., and Vladykin, N.V., Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: implications for the sources of the parental magma and metasomatizing fluids, J. Asian Earth Sci., 2016, vol. 26, pp. 81–96.

    Article  Google Scholar 

  34. Duarte, J.C., Schellart, W.P., and Rosas, F.M., The future of Earth’s oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation, Geol. Mag., 2018, vol. 155, no. 1, pp. 45–58.

    Article  Google Scholar 

  35. Emam, A., Zoheir, B., Radwan, A.M., Lehmann, B., Zhang, R., Fawzy, S., and Nolte, N., Petrogenesis and evolution of the Nuweibi rare-metal granite, Central Eastern Desert, Egypt, Arab. J. Geosci., 2018, vol. 11.

  36. Fetherston, J.M., Tantalum in Western Australia, Mineral Resour. Bull., Geol. Surv Canada, 2004, vol. 22.

    Google Scholar 

  37. Frolov, A.A., Tolstov, A.V., Belov, S.V., Karbonatitovye mestorozhdeniya Rossii (Carbonatite Deposits of Russia), Moscow: NIA-Priroda, 2003.

  38. Fuertes-Fuente, M. and Martin-Izard, A., The Forcarei Sur rare-element granitic pegmatite field and associated mineralization, Galicia, Spain, Can. Mineral., 1998, vol. 36, pp. 303–325.

    Google Scholar 

  39. Gambogi, J., Thorium, Minerals Yearbook, 2015, V.I. Metals and Minerals. U.S. Geol. Surv., 2018, pp. 77.1–77.5. URL: https://minerals.usgs.gov/minerals/pubs/commodity/thorium/myb1-2015-thori.pdf. (06.09.2018)

  40. Graham, S., Lambert, D., and Shee, S., The petrogenesis of carbonatite, melonite and kimberlite from the Eastern Goldfield province, Yilgarn Craton, Lithos, 2004, vol. 76, pp. 519–533.

    Article  Google Scholar 

  41. Grechishchev, O.K., Zhmodik, S.M., and Shcherbov, B.L., Redkometall’noe mestorozhdenie Ulug-Tanzek (Rossiya, Tuva) (Ulug-Tanzek Rare-Metal Deposit (Russia, Tuva), Novosibirsk: GEO, 2010.

  42. Harris, P.D., Robb, L.J., and Tomkinson, M.J., The nature and structural setting of rare-element pegmatites along the nothern flank of the Barberton greenstone belt, South Africa, South Afr. J. Geol., 1995, vol. 98, no. 1, pp. 82–94.

    Google Scholar 

  43. Jacobson, M.I., Calderwood, M.A., and Grguric, B.A., Guidebook to the Pegmatites of Western Australia, Carlisle, W.A.: Hesperian Press, 2007.

  44. Jelsma, H.A., Vinyu, M.L., Valbracht, P.J., Davies, G.R., Wijbrans, J.R., and Verdurmen, E.A.T., Constraints on Archaean crustal evolution of the Zimbabwe Craton: a U-Pb zircon, Sm-Nd and Pb-Pb whole-rock isotope study, Contrib. Mineral. Petrol., 1996, vol. 124, pp. 55–70.

    Article  Google Scholar 

  45. Kang, Z.Q., Feng, Z.H., Yang, F., Liao, J.F., and Pan, H.B., SHRIMP zircon U-Pb age of the Limu Granite in Eastern Guilin, Guangxi, Geol. Bull. China, 2012, vol. 31, pp. 1306–1312.

    Google Scholar 

  46. Kendall-Langley, L. and Kemp, A., Timing, Tectonic Setting and Melt Sources of Li–Cs–Ta Pegmatites in Western Australia, http://www.cet.edu.au/docs/default-source/presentations/2017-members'-day-posters/members-day-2017-poster-by-lilly-kendall-langley-timing-tectonic-setting-and-melt-sources-of-li-cs-ta-pegmatites-in-western-australia. pdf?sfvrsn=2.

  47. Kinny, P.D., U-Pb dating of rare metal (Sn–Ta–Li) mineralized pegmatites in western australia by SIMS analysis of tin and tantalum bearing ore minerals, New Frontiers in Isotope Geology. Conference Abstracts and Proceedings.Lorne, Australia, 2000, pp. 113–116.

    Google Scholar 

  48. Korovkin, V.A., Turyleva, L.V., Rudenko, D.G., Zhuravlev, V.A., and Klyuchnikova, G.N., Nedra Severo-Zapada Rossiiskoi Federatsii (Interiors of the Northwestern Part of the Russian Federation), St. Petersburg: VSEGEI, 2003.

  49. Kostitsyn, Yu.A. and Altukhov, E.N., The Khäilama and Aryskan massifs of Alkali Granitoids, Eastern Sayan: age and formation conditions by Rb–Sr isotopic and geochemical data, Geochem. Int., 2004, vol. 12, no. 3, pp. 195–204.

    Google Scholar 

  50. Kostitsyn, Yu.A., Zaraisky, G.P., Aksyuk, A.M., and Chevychelov, V.Yu., Rb–Sr evidence for the genetic links between biotite and Li–F granites: An Example of the Spokoinoe, Orlovka, and Etyka deposits, Eastern Transbaikalia, Geochem. Int., 2004, vol. 12, no. 9, pp. 822–829.

    Google Scholar 

  51. Kotov A.B., Vladykin N.V., Larin A.M., Gladkochub D.P., Sal’nikova E.B., Sklyarov E.V., Tolmacheva, E.V., Donskaya, T.V., Velikoslavinskii, S.D., and Yakovleva, S.Z., New data on the age of ore formation in the unique Katugin rare-metal deposit (Aldan Shield), Dokl. Earth Sci., 2015, vol. 463, no. 2, pp. 663–667.

    Article  Google Scholar 

  52. Kovalenko, V.I., Kostitsyn, Yu.A., Yarmolyuk, V.V., Budnikov, S.V., Kovach, V.P., Kotov, A.B., Sal’nikova, E.B., and Antipin, V.S., Magma sources and the isotopic (Sr and Nd) evolution of Li-F rare-metal granites, Petrology, 1999, vol. 7, no. 4, pp. 383–409.

    Google Scholar 

  53. Kovalenko, V.I., Yarmolyuk, V.V., Sal’nikova, E.B., Kartashov, P.M., Kovach, V.P., Kozakov, I.K., Kozlovskii, A.M., Kotov, A.B., Ponomarchuk, V.A., Listratova, E.N., and Yakovleva, S.Z., The Khaldzan-Buregtei massif of peralkaline rare-metal igneous rocks: structure, geochronology, and geodynamic setting in the Caledonides of Western Mongolia, Petrology, 2004, vol. 12, no. 5, pp. 412–436.

    Google Scholar 

  54. Kremenetsky, A.A., Beskin, S.M., Lehmann, B., and Seltmann, R., Economic geology of granite-related ore deposits of Russia and other FSU countries: an overview, Ore-Bearing Granites of Russia and Adjacent Countries, Moscow: IMGRE, 2000, pp. 3–56.

    Google Scholar 

  55. Krumrei, T.V., Villa, I.M., Marks, M.A.W., and Markl, G., A 40Ar/39Ar and U/Pb isotopic study of the Ilimaussaq complex, South Greenland: implications for the 40K decay constant and for the duration of magmatic activity in a peralkaline complex, Chem. Geol., 2006, vol. 227, pp. 258–273.

    Article  Google Scholar 

  56. Kudrin, V.S., Rozhanets, A.V., Chistov, L.B., Usova, T.Yu., and Ryabtsev, V.V., Tantalum of Russia: state, prospects of development, and evolution of the mineral-raw base, Mineral. Syr’e. Ser. Geol-Ekonom., 1999, no. 4.

  57. Kudryashov, N.M., Gavrilenko, B., and Apanasevich, E., Time of formation of rare-metal pegmatites in the Kolmozero-Voron’ya Greenstone Belt (Kola region of the Baltic Shield): U-Pb, Pb-Pb tantalite, columbite and tourmaline dating, 32nd IGC, Florence, Abstracts,2004, abstracts, pt. 2, p. 32.

  58. Kupriyanova, I.I. and Shpanov, E.P., Berillievye mestorozhdeniya Rossii (Beryllium Deposits of Russia), Moscow: GEOS, 2011.

  59. Küster, D., Granitoid-hosted Ta mineralization in the Arabian–Nubian shield: ore deposit types, tectono-metallogenetic setting and petrogenetic framework, Ore Geol. Rev., 2009, vol. 35, pp. 68–86.

    Article  Google Scholar 

  60. Küster, D., Romer, G., Tolessa, D., Zerihun, D., Bheemalingeswara, K., Melcher, F., and Oberthür, T., The Kenticha rare-element pegmatite, Ethiopia: internal differentiation, U-Pb age and Ta mineralization, Miner. Deposita, 2009, vol. 44, pp. 723–750.

    Article  Google Scholar 

  61. Kuznetsova L., Shokal’skii S., Sergeev, S.A., Age, Composition, and Geodynamic Environments for the Formation of Granites and Lithium-rich Rare-Element Pegmatite of Khusuingol Field (Sangilen Highlands), Dokl. Earth Sci., 2018, vol. 482, no. 2, pp. 1311–1316.

    Article  Google Scholar 

  62. Lagach, M. and Quemeneur, J., The Volta Grande pegmatites, Minas Gerais, Brazil: an example of rare-element granitic pegmatites exceptionally enriched in lithium and rubidium, Can. Mineral., 1997, vol. 35, pp. 53–65.

    Google Scholar 

  63. Laval, M., Johan, V., and Tourliere, B., La carbonatite de mabounie: exemple de formation d’un gite residuel a pyrochlore, Chron. Recher. Miniere, 1988, vol. 491, pp. 125–136.

    Google Scholar 

  64. Li, S., Li, J., Chou, I.-M., Jiang, L., and Ding, X., The formation of the Yichun Ta–Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions, J. Asian Earth Sci., 2017, vol. 137, pp. 180–193.

    Article  Google Scholar 

  65. Linde, T.P., Stavrov, O.D., Yushko, N.A., Petrova, N.V., Tyutyunnik, N.D., Ryabtsev, V.V., Shaderman F.I., Shpanov, E.P., and Matias, V.V., Lithium of Russia: state, prospects of development and evolution of the mineral-raw base, Mineral. Syr’e, Ser. Geol.-Ekonom., 2000, no. 6.

  66. Makanga, J.F. and Edou-Minko, A., Etude petrographique et geochimique du complexe annulaire de Mabounie (Gabon), Afr. J. Sci. Technol., 2003, vol. 4, no. (1), pp. 67–77.

  67. McCreath, J.A., Finch, A.A., Simonsen, S.L., Donaldson, C.H., and Armour-Brown, A., Independent ages of magmatic and hydrothermal activity in alkaline igneous rocks: the Motzfeldt Centre, Gardar Province, South Greenland, Contrib. Mineral. Petrol., 2012, vol. 163, pp. 967–982.

    Article  Google Scholar 

  68. Meakin, N.S. and Morgan, E.J., Dubbo 1 : 250,000 Geological Sheet SI/55-4. Explanatory Notes, 2nd ed., Sydeny: Geol. Surv. New South Wales, 1999.

  69. Melcher, F., Graupner, T., Gäbler, H.-E., Sitnikova, M., Henjes-Kunst, F., Oberthür, T., Gerdes, A., and Dewaele, S., Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology, Ore Geol. Rev., 2015, vol. 64, pp. 667–719.

    Article  Google Scholar 

  70. Melcher, F., Graupner, T., Gäbler, H.-E., Sitnikova, M., Oberthür, T., Gerdes, F., Badanina, B., and Chudy, T., Mineralogical and chemical evolution of tantalum–(niobium–tin) mineralisation in pegmatites and granites. Part 2: Worldwide examples (excluding Africa) and an overview of global metallogenetic patterns, Ore Geol. Rev., 2017, vol. 89, pp. 946–987.

    Article  Google Scholar 

  71. Melleton, J., Gloaguen, E., and Frei, D., Rare-elements (Li–Be–Ta–Sn–Nb) magmatism in the European Variscan belt, a review, Mineral Resources in a Sustainable World. Proce. 13th SGA Biennial Meeting, Nancy, France, 2015, vol. 2, pp. 807–810.

  72. Mineral potential of Malawi. V.I. Mineral deposits associated with alkaline magmatism. Ministry of energy and mines, Republic of Malawi, 2009. URL: http://nora.nerc.ac.uk/id/ eprint/8680/1/Malawi_brochure_1.pdf (06.09.2018)

  73. Moghazi, A.-K.M., Iaccheri, L.M., Bakhsh, R.A., Kotov, A.B., and Ali, K.A., Sources of rare-metal-bearing A-type granites from Jabel Sayed complex, Northern Arabian Shield, Saudi Arabia, J. Asian Earth Sci., 2015, vol. 107, pp. 244–258.

    Article  Google Scholar 

  74. Möller, V. and Williams-Jones, A.E., Stable and radiogenic isotope constraints on the magmatic and hydrothermal evolution of the Nechalacho layered suite, Northwest Canada, Chem. Geol., 2016, vol. 440, pp. 248–274.

    Article  Google Scholar 

  75. Murzintsev, N. G., Oitseva, T. A., Kotler, P. D., Vladimirov, A.G., Travin, A.V., Khromykh, S.V., D’yachkov, B.A., Kuz’mina, O.N., and Annikova, I.Yu., Ar/Ar isotope age and strucgural control of the spodumene–pegmatite deposits of East Kazakhstan, Korrelyatsiya altaid i uralid: magmatizm, metamorfizm, stratigrafiya, geokhronologiya, geodinamika i metallogeniya. Materialy III mezhdunar. nauch. Konferentsii (Correlation of Altaides and Uralides. Magmatism, Metamorphism, Stratigraphy, Geochronology, Geodynamics, and Metallogeny. Proc. 3rd International Conference), Novosibirsk: Izd-vo Sib. Otd. RAN, 2016, pp. 132–135.

  76. Papp, J.F., Niobium (columbium) and tantalum, Minerals Yearbook, 2009, Vol. I. Metals and Minerals, US. Geol. Surv., 2011, pp. 52.1–52.15. URL: https://minerals.usgs.gov/minerals/pubs/commodity/niobium/myb1-2009-niobi.pdf (06.12.2018).

  77. Papp, J.F., Tantalum, Minerals Yearbook, 2015, Vol. I. Metals and Minerals. U.S. Geol. Surv., 2018, pp. 76.1–76.8. URL: https://minerals.usgs.gov/minerals/pubs/commodity/niobium/myb1-2015-tanta.pdf. (06.12.2018).

  78. Partington, G.A., McNaughton, N.J., and Williams, I.S., A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia, Econ. Geol., 1995, vol. 90, pp. 616–635.

    Article  Google Scholar 

  79. Pirajno, F., Gonzalez-Alvarez, I., Border, A., and Porter, T.M., Mount Weld and Gifford Creek rare earth elements carbonatites, Australian Inst. Mining Metallurg. (AusIMM) Monogr. 32, Australian Ore Deposits, Phillips, N., Eds., Carlton, Australian Institute of Mining and Metallurgy (AusIMM), 2017, vol. 32, pp. 163–166.

  80. Puchner, C.C., Geology, alteration, and mineralization of the Kougarok Sn deposit, Seward Peninsula, Alaska, Econ. Geol., 1986, vol. 81, no. 7, pp. 1775–1794.

    Article  Google Scholar 

  81. Qiu, Z.L., Liang, D.Y., Wang, Y.F., Sun, Y., and Li, L.F., Zircon REE, trace element characteristics and U-Pb chronology in the Baerzhe alkaline granite: implications to the petrological genesis and mineralization, Acta Petrol. Sinica, 2014, vol. 30, pp. 1757–1768.

    Google Scholar 

  82. Raimbault, L., Cuney, M., Azencott, C., Duthou, J.L., and Joron, J.L., Geochemical evidence for a multistage magmatic genesis of Ta–Sn–Li mineralization in the granite at Beauvoir, French Massif Central, Econ. Geol., 1995, vol. 90, pp. 548–576.

    Article  Google Scholar 

  83. Rijks H.R.P., H. van der Veen A.H., The geology of the tin-bearing pegmatites in the eastern part of the Kamativi district, Rhodesia, Miner. Deposita, 1972, Vol. 7, pp. 383–395.

    Article  Google Scholar 

  84. Rodionov, N.V., Lepekhina, E.N., Antonov, A.V., Kapitonov, I.N., Balashova, Yu.S., Belyatskii, B.V., Arzamastsev, A.A., and Sergeev, S.A., U-Pb SHRIMP-II ages of titanite and timing constraints on apatite–nepheline mineralization in the Khibiny and Lovozero alkaline massifs (Kola Peninsula), Russ. Geol. Geophys., 2018, vol. 59, no. 8, pp. 962–974.

    Article  Google Scholar 

  85. Rose Lithium-Tantalum project, Feasibility study NI 43 101 technical report prepared for Critical Elements Corp. by WSP. 2017. URL: https://www.cecorp.ca/wp-content/uploads/ rose-43-101_revised_november_2017.pdf. (04.12.2018).

  86. Rukhlov, A.S., Chudy, T.C., Arnold, H., and Miller, D., Field trip guidebook to the Upper Fir carbonatite-hosted Ta-Nb deposit, Blue River area, east-central British Columbia. British Columbia Ministry of Energy, Mines and Petroleum Resources, Geol. Surv., 2018, GeoFile 2018-6. 2018.

  87. Rundquist, D.V., Tkachev, A.V., Cherkasov, S.V. et al., Krupnye i superkrupnye mestorozhdeniya rudnykh poleznykh iskopaemykh. T.1. Global’nye zakonomernosti razmeshcheniya (Large and Superlarge Ore Deposits. Volume 1. Global Tendencies of Distribution), Moscow: IGEM RAN, 2006.

  88. Sal’nikova, E.B., Kotov, A.B., Yakovleva, S.Z., Anisimova, I.V., Plotkina, Yu.V., Fedoseenko, A.M., Makagon, V.M., Levitskii V.I., Larin, A.M., and Nikiforov, A.V., U-Pb geocronological studies of non-traditional mineral geochronometers, Novye gorizonty v izuchenii protsessov magmo- i rudoobrazovaniya (New Horizons in Studying the Magma and Ore Formation), Moscow: RITs VIMS, 2010, p. 372.

  89. Sal’nikova, E.B., Larin, A.M., Yakovleva, S.Z., Kotov, A.B., Glebovitskii, V.A., Tkachev, A.V., Anisimova, I.V., Plotkina, Yu.V., Pavlov, M.R., and Gorokhovskii, B.M., Age of the Vishnyakovskoe deposit of rare-metal pegmatites (East Sayan): U–Pb geochronological study of manganotantalite, Dokl. Earath Sci., 2011, vol. 441, no. 1, pp. 1479–1483.

    Article  Google Scholar 

  90. Søhonwandt, H.K., Barnes, G.B., and Ulrich, T., A description of the world-class rare earth element deposit, Ranbreez, South Greenland, Rare Earths Industry: Technological, Economic, and Environmental Implications, De Lima, I.B. and Filho, W.L., Eds, London: Elsevier, 2016, pp. 73–85.

  91. Schulz, K.J., Piatak, N.M., and Papp, J.F., Niobium and tantalum, Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply, Schulz, K.J., DeYoung, J.H. Jr., Seal, R.R. II, & Bradley, D.C., Eds., U.S. Geol. Surv. Prof. Pap., 2017, no. 1802, pp. M1–M34. URL: https://doi.org/10.3133/pp1802M. (06.12.2018).

  92. Shu, X., Wang, X., Sun, T., Xu, X., and Dai, M., Trace elements, U-Pb ages and Hf isotopes of zircons from Mesozoic granites in the Western Nanling Range, South China: implications for petrogenesis and W–Sn mineralization, Lithos, 2011, vol. 127, pp. 468–482.

    Article  Google Scholar 

  93. Solgadi, F., Groulier, P.-A., Moukhsil, A., Ohnenstetter, D., Andre-Mayer, A.-S., and Zeh, A., Nb-Ta–REE mineralization associated with the Crevier alkaline intrusion, Symposium on Strategic and Critical Materials Proceedings, British Columbia Ministry of Energy and Mines, Victoria, 2015.

  94. Solodov, N.A., Felsic rare-metal granites, Mestorozhdeniya litofil’nykh redkikh elementov (Deposits of Lithophile Rare Elements), Ovchinnikov, L.N. and Solodov, N.A., Eds., Moscow: Nedra, 1980, pp. 62–82.

    Google Scholar 

  95. Spandler, C. and Morris, C., Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y, and REE) deposit, NSW Australia, and implications for rare metal mineralization in peralkaline igneous rocks, Contrib. Mineral. Petrol., 2016, vol. 171, pp. 104–127.

    Article  Google Scholar 

  96. Sweetapple, M.T. & Collins, P.L.F., Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara craton, Western Australia, Econ. Geol., 2002, vol. 97, pp. 873–895.

    Article  Google Scholar 

  97. Sweetapple, M.T., Holmes, J., Young, J., Grigson, M.W., Barnes, L., and Till, S., Pilgangoora lithium–tantalum pegmatite deposit, Australian Institute of Mining and Metallurgy (AusIMN) Monogr. Australian Ore Deposits, Phillips, N., Eds., Carlton, Australian Institute of Mining and Metallurgy (AusIMM), 2017, vol. 32, pp. 339–342.

  98. Syritso, L.F., Mezozoiskie granitoidy Vostochnogo Zabaikal’ya i problemy redkometal’nogo rudoobrazovaniya (Mesozoic Granitoids of Eastern Transbaikalia and Problems of Rare-Metal Ore Formation), St. Petersburg: St. Petersb. Univ., 2002.

  99. Tang, Y., Zhao, J.Y., Zhang, H., Cai, D.W., Lv, Z.H., Liu, Y.L., and Zhang, X., Precise columbite-(Fe) and zircon U-Pb dating of the Nanping No. 31 pegmatite vein in northeastern Cathaysia Block, SE China, Ore Geol. Rev., 2017, vol. 83, pp. 300–311.

    Article  Google Scholar 

  100. Tantalum, Mineral Commodity Summaries 2018, Reston: U.S. Geol. Surv., 2018, pp. 164–165.

    Google Scholar 

  101. Taylor, W.R., Page, R.W., Esslemont, G., Rock, N.M.S., and Chalmers, D.I., Geology of the volcanic-hosted brockman rare-metals deposit, halls cree mobile zone, northwest australia. part. i. volcanic environment, geochronology and petrography the brockman volcanics, Mineral. Petrol., 1995, vol. 52, pp. 209–230.

    Article  Google Scholar 

  102. Tkachev, A.V., Metallogenic evolution of granitoid pegmatite genesis in the Earth’s evolution: main tendencies and probable causes, Byull. Mosk. O-va Ispyt. Prir.,Ser. Geol., 2011, vol. 86, no. 1, pp. 41–57.

    Google Scholar 

  103. Tkachev, A.V., Bulov, S.V., Chesalova, E.I., Geoportal “Metallogeniya”, Geoinformatika, 2019, no. 1, pp. 3–12.

  104. Tkachev, A.V., Bulov, S.V., Rundquist, D.V., et al., WEB-GIS World’s largest deposits, Geoinformatika, 2015, no. 1, pp. 47–59.

  105. Tkachev, A.V. and Rundquist, D.V., Influence of supercontinent cyclicity on global metallogenic processes: main tendencies, Dokl. Earth Sci., 2016a, vol. 469, no. 5, pp. 797–801.

    Article  Google Scholar 

  106. Tkachev, A.V. and Rundquist, D.V., Global trends in the evolution of metallogenic processes as a reflection of supercontinent cyclicity, Geol. Ore Deposits, 2016b, vol. 58, no. 4, pp. 263–283.

    Article  Google Scholar 

  107. Tkachev, A.V., Rundqvist, D.V., and Vishnevskaya, N.A., Metallogeny of lithium through geological time, Russ. J. Earth Sci., 2018, vol. 18, no. 6, ES6002.

    Article  Google Scholar 

  108. Trumbull, R.B., A petrological and Rb/Sr isotopic study of an Early Archean fertile granite–pegmatite system: the Sinceni pluton in Swaziland, Precambrian Res., 1993, vol. 61, pp. 89–116.

    Article  Google Scholar 

  109. Tukiainen, T., The Motzfeldt Centre of the Igaliko Nepheline Syenite Complex, South Greenland – a major resource of REE, Abstr. ERES2014: 1st European Rare Earth Resources Conference, Milos, 2014, pp. 317–324. http://www.eurare.eu/docs/eres2014/fifthSession/TapaniTukiainen.pdf. (06.09.2018)

  110. van der Veen, A.H., The geology of the tin-bearing pegmatites in the eastern part of the Kamativi district, Rhodesia, Miner. Deposita, 1972, vol. 7, pp. 383–395.

    Article  Google Scholar 

  111. Volkov, A.V. and Galyamov, A.L., Prospects of mining industry in Greenland, Arktika: Ekol. Ekonom., 2016, no. 2, pp. 24–34.

  112. Von Knorring, O. and Condliffe, E., Mineralized pegmatites in Africa, Geol. J., 1987, vol. 22, no. 2, pp. 253–270.

    Article  Google Scholar 

  113. Wang, C., Deng, J., Carranza, E.J.M., and Santosh, M., Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan domain: nature, deposit types, and tectonic setting, Gondwana Res., 2014a, vol. 26, pp. 576–593.

    Article  Google Scholar 

  114. Wang, L., Ma, C., Zhang, C., Zhang, J., and Marks, M.A.W., Genesis of leucogranite by prolonged fractional crystallization: a case study of the Mufushan complex, South China, Lithos, 2014b, vol. 206–207, pp. 147–163.

    Article  Google Scholar 

  115. Woolley, A.R., Alkaline Rocks and Carbonatites of the World. Pt. 3: Africa, Bath: The Geological Society Publishing House, 2001.

    Google Scholar 

  116. Wu, M., Samson, I.M., and Zhang, D., Textural and chemical constraints on the formation of disseminated granite-hosted W–Ta–Nb mineralization at the Dajishan Deposit, Nanling Range, Southeastern China, Econ. Geol., 2017, vol. 112, no. 4, pp. 855–887.

    Article  Google Scholar 

  117. Xie, L., Wang, Z., Wang, R., Zhu, J., Che, X., Gao, J., and Zhao, X., Mineralogical constraints on the genesis of W–Nb–Ta mineralization in the Laiziling Granite (Xianghualing District, South China), Ore Geol. Rev., 2018, vol. 95, pp. 695–712.

    Article  Google Scholar 

  118. Xu, Y., Yang, Q., Lan, J., Luo, Z., Huang, X., Shi, Y., and Xie, L., Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong–Tengliang–Yingjiang area, western Yunnan: constraints from zircon U-Pb ages and Hf isotopes, J. Asian Earth Sci., 2012, vol. 53, pp. 151–175.

    Article  Google Scholar 

  119. Yarmolyuk, V.V., Kovalenko, V.I., Sal’nikova, E.B, Kozakov, I.K., Kotov, A.B., Kovach, V.P., Vladykin, N.V., and Yakovleva, S.Z., U–Pb age of syn- and postmetamorphic granitoids of South Mongolia: evidence for the presence of Grenvillides in the Central Asian Foldbelt, Dokl. Earth Sci., 2005, vol. 404, no. 1, pp. 986–990.

    Google Scholar 

  120. Yarmolyuk, V.V., Lykhin, L.A., Shuriga, T.N., Vorontsov, A.A., Sugorakova, A.M., Age, composition of rocks, and geological setting of the Snezhnoe beryllium deposit: substantiation of the Late Paleozoic East Sayan rare-metal zone, Russia, Geol. Ore Deposits, 2011, vol. 53, no. 5, pp. 390–400.

    Article  Google Scholar 

  121. Yarmolyuk, V.V., Nikiforov, A.V., Sal’nikova, E.B., Travin, A.V., Kozlovskii, A. M., Kotov, A.B., Shuriga, T.N., Lykhin, D.A., Lebedev, V.I., Anisimova, I.V., Plotkina, Yu.V., and Yakovleva, S.Z., Rare-metal granitoids of the Ulug-Tanzek Deposit (Eastern Tyva): age and tectonic setting, Dokl. Earth Sci., 2010, vol. 430, no. 1, pp. 95–100.

    Article  Google Scholar 

  122. Zagorsky, V.E., Makagon, V.M., Shmakin, B.M., Makrygina, V.A., and Kuznetsova, L.G., Rare-metal pegmatites, Granitnye pegmatity (Granite Pegmatites), Shmakin, B.M, Eds., Novosibirsk: Nauka, 1997, vol. 2.

  123. Zagorsky, V.E., Shokalsky, S.P., and Sergeev, S.A. Age, Duration of formation, and geotectonic position of the Zavitaya lithium granite–pegmatite system, Eastern Transbaikalia, Dokl. Earth Sci., 2015, vol. 460, no. 1, pp. 16–21.

    Article  Google Scholar 

  124. Zhang, R., Sun, W., Lehmann, B., Symons, G., Seltmann, R., Schmidt, C., and Li, C., Pan-African tin mineralization events in the Damara orogenic belt, Namibia, SW Africa: Constraints of cassiterite U-Pb dating and trace elements fingerprinting, SEG 2017 Conference Abstracts, Beijing, 2017. Abstractswww.segweb.org/SEG/_Events/Conference_Archive/2017/Conference_Proceedings/files/pdf/Oral-Presentations/Abstracts/Zhang-R.pdf

  125. Zhang, S., Chen, Z., Shi, G., Li, L., Qu, W., and Li, C., Re-Os isotopic dating of molybdenite from Dajishan tungsten deposit in Jiangxi Province, Mineral Deposits, 2011, vol. 30, pp. 1113–1121.

    Google Scholar 

  126. Zhu, J.C., Li, R.K., Li, F.C., Xiong, X.L., Zhou, F.Y., and Huang, X.L., Topaz–albite granites and rare-metal mineralization in the Limu district, Guangxi Province, Southeast China, Miner. Deposita, 2001, vol. 36, pp. 393–405.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are very grateful to Academician V.V. Yarmolyuk and А.V. Volkov Dr. Sci. (Geol.–Miner.) for their reviews on the manuscript. The obtained comments and recommendations allowed us to improve the final version of the study significantly.

Funding

This work was performed with financial support of project nos. 0140-2019-0005 of state works (database creation) and 0140-2018-0004 under program no. 48 of the FSR of the Presidium of the Russian Academy of Sciences (the analysis and synthesis of information) at Vernadsky State Geological Museum, Russian Academy of Sciences (SGM RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tkachev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachev, A.V., Rundqvist, D.V. & Vishnevskaya, N.A. Global Metallogeny of Tantalum Through Geological Time. Geol. Ore Deposits 61, 512–529 (2019). https://doi.org/10.1134/S1075701519060060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701519060060

Keywords:

Navigation