Skip to main content
Log in

Genesis and evolution of the South Atlantic volcanic islands offshore Brazil

  • Review
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The Brazilian continental margin includes several volcanic islands, submerged volcanic seamounts, and a unique non-volcanic archipelago located in a transform segment of the Equatorial South Atlantic. The mechanism of formation of these islands is related to post-breakup magmatic episodes dated as Late Cretaceous to Pleistocene. Diverse Late Cretaceous to Paleogene alkaline magmatic episodes are registered in southeast Brazil, resulting in igneous plugs onshore and volcanic structures offshore. The Abrolhos Volcanic Complex in eastern Brazil is characterized by several volcanic features on the continental shelf, including small islands that expose Paleogene sedimentary layers interbedded with volcanic sequences. The adjacent Vitória-Trindade Chain extends to oceanic crust forming basaltic to alkaline seamounts that outcrop at the Trindade Archipelago, the easternmost islands in Brazil with the youngest volcanic eruptions. The Fernando de Noronha lineament in northeast Brazil is characterized by Neogene alkaline igneous plugs. The small islets in the São Pedro—São Paulo archipelago, located near the mid-Atlantic ridge, are formed by exhumed mantle rocks related to compressional episodes a transform fault zone. The Rio Grande Rise in southern Brazil is characterized by shallow Paleogene seamounts and a large oceanic plateau probably related to subaerial spreading centers formed in the Late Cretaceous. Multiple mechanisms are responsible for the origin and evolution of the volcanic islands offshore Brazil in continental, transitional, and oceanic crust settings, including volcanic build-ups, leaking fracture zones, and hotspots. Some of the islands might be related to mantle plume activity, as indicated by comparisons with modern mantle plume analogues in the South Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Almeida FFM (1956) Geologia e Petrografia do Arquipélago de Fernando de Noronha. Rio de Janeiro: Div. Geol. Miner.:181 p. (Monogr. XIII)

  • Almeida FFM (1961) Geologia e petrologia da Ilha de Trindade. Rio de Janeiro: Div. Geol. Miner. DNPM., 198 p., mapa (Monogr. XVIII)

  • Almeida FFM (1991) O alinhamento magmático de Cabo Frio, in: Simpósio de Geologia do Sudeste 2, São Paulo, Atas... São Paulo, SBG SP/RJ: 423–428

  • Almeida FFM (2006) Ilhas oceânicas brasileiras e suas relações com a tectônica atlântica. Terræ Didatica 2(1):3–18

    Google Scholar 

  • Almeida FFM, Carneiro CDR, Mizusaki AMP (1996) Correlação do magmatismo das bacias da margem continental brasileira com o das áreas emersas adjacentes. Rev Bras Geosci 26(3):125–138

    Google Scholar 

  • Almeida J, Dios F, Mohriak WU, Valeriano CM, Heilbron M, Eirado LG, Tomazzoli E (2013) Pre-rift tectonic scenario of the Eo-cretaceous Gondwana break-up along SE Brazil–SW Africa: insights from tholeiitic mafic dyke swarms. In: Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) Conjugate divergent margins, vol 369. Geological Society, London, Special Publications, pp 11–40

    Google Scholar 

  • Alves EC, Maia M, Sichel SE, Campos CMP (2006a) Zona de fratura de Vitória-Trindade no Oceano Atlântico sudeste e suas implicações tectônicas. Revista Brasileira de Geofísica 24(1):117–127

    Google Scholar 

  • Alves TM, Moita C, Sandnes F, Cunha T, Monteiro JH, Pinheiro LM (2006b) Mesozoic–Cenozoic evolution of North Atlantic continental-slope basins: the Peniche basin, western Iberian margin. AAPG Bull 90(1):31–60

    Google Scholar 

  • Barker PF (1983) Tectonic evolution and subsidence history of the Rio Grande rise, in P. F. Barker, R. L. Carlson, D. A. Johnson et al. (eds.), Initial reports of the deep sea drilling project, Washington (U.S. Govt. Printing Office) 72:953–976

  • Barker PF, Carlson RL, Johnson DA, Cepek P, Coulbourn W, Gamboa LA, Hamilton N, Melo U, Pujol C, Shor AN, Suzyumov AE, Tjalsma LRC, Walton WH, Weiss W (1981) Deep Sea drilling project leg 72: Southwest Atlantic paleocirculation and Rio Grande rise tectonics. Geol Soc Am Bull 92:294–309

    Google Scholar 

  • Batiza R and White JDL (2000) Submarine lavas and Hyaloclastite, in The Encyclopedia of Volcanoes, edited by H. Sigurdsson, B. Houghton, S. McNutt, H. Rymer and J. Stix, Academic Press, New York. 361-381

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim SH, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32(4):355–371

    Google Scholar 

  • Beniest A, Koptev A, Burov E (2017a) Numerical models for continental break-up: implications for the South Atlantic. Earth Planet Sci Lett 461:176–189

    Google Scholar 

  • Beniest A, Koptev A, Leroy S, Sassi W, and Guichet X (2017b) Two-branch break-up systems by a single mantle plume: insights from numerical modeling, Geophys Res Lett, 44(19), 958920139597

    Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries, geochemistry, geophysics. Geosystems 4(3):1027. https://doi.org/10.1029/2001GC000252

    Article  Google Scholar 

  • Bischoff AP, Nicol A, Beggs M (2017). Stratigraphy of architectural elements in a buried volcanic system and implications for hydrocarbon exploration. Interpretation, 5(3):141–159

    Google Scholar 

  • Blaich OA, Faleide JI, Tsikalas F, Gordon AC, Mohriak W (2013) Crustal-scale architecture and segmentation of the South Atlantic volcanic margin. In: Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) Conjugate Divergent Margins, vol 369. Geological Society, London, Special Publications, pp 167–183

    Google Scholar 

  • Boillot G, Grimaud S, Mauffret A, Mougenot D, Kornprobst J, Mergoil-Daniel J, Torrent G (1980) Ocean-continent boundary off the Iberian margin: a serpentinite diapir west of the Galicia Bank. Earth Planet Sci Lett 48:23–34

    Google Scholar 

  • Bonattti E, Hamlyn P, Ottonello G (1981) Upper mantle beneath a young oceanic rift: peridotites from the island of Zabargad (Red Sea). Geology 9:474–479

    Google Scholar 

  • Bonvalot S, Balmino G, Briais A, Kuhn M, Peyrefitte A, Vales N, Biancale R, Gabalda G, Reinquin F, Sarrailh M (2012) World gravity map, in: BGI-CGMW-CNES-IRD (Ed.). Commission for the Geological Map of the World, Paris, p 8

    Google Scholar 

  • Buck WR (2017) The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins. Earth Planet Sci Lett 446:62–69

    Google Scholar 

  • Campos CWM, Ponte FC, Miura K (1974) Geology of the Brazilian continental margin. In: Burk CA, Drake CL (eds) The geology of the continental margins. Springer-Verlag, New York, pp 447–461

    Google Scholar 

  • Cande SC, LaBrecque JL, Haxby WF (1988) Plate kinematics of the South Atlantic: Chron C34 to present. J Geophys Res 93(B11):13,479–13,492

    Google Scholar 

  • Chevallier L (1987) Tectonic and structural evolution of Gough volcano: a volcanological model. J Volcanol Geotherm Res 33(4):325–336

    Google Scholar 

  • Chevallier L, Verwoerd WJ (1987) Dynamic interpretation of Tristan da Cunha Volcano, South Atlantic Ocean. J Volcanol Geotherm Res 34:35–49

    Google Scholar 

  • Coffin MF, Eldholm O (1994) Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev Geophys 32(1):1–36. https://doi.org/10.1029/93RG02508

    Article  Google Scholar 

  • Coffin MF, Eldholm O (2001) Large igneous provinces: progenitors of some ophiolites? In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time, vol 352. Geological Society of America, Boulder, Colorado, Special Paper, pp 59–70

    Google Scholar 

  • Condie KC (2001) Mantle plumes and their record in earth history. Press, Cambridge University 306 pp

    Google Scholar 

  • Constantino RR, Hackspacher PC, Souza IA, Costa ISL (2017) Basement structures over Rio Grande rise from gravity inversion. J S Am Earth Sci 75:85–91

    Google Scholar 

  • Cordani UG (1970) Idade do vulcanismo do Oceano Atlântico Sul. Boletim Instituto de Geociências e Astronomia 1:9–75

  • Cordani UG, Blazekovic A(1970) Idades radiométricas das rochas vulcânicas dos Abrolhos, Congresso Brasileiro de Geologia, 24, Brasília, 1970. SBG, Anais... Brasília, pp 265–270

  • Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308

    Google Scholar 

  • Detrick RS, Sclater JG, Thiede J (1977) The subsidence of aseismic ridges. Earth Planet Sci Lett 34:185–196

    Google Scholar 

  • Doré AG, Lundin ER, Kusznir NJ, Pascal C (2008) Potential mechanisms for the genesis of Cenozoic domal structures on the NE Atlantic margin: pros, cons and some new ideas. In: Johnson H, Doré AG, Gatliff RW, Holdsworth R, Lundin ER, Ritchie JD (eds) The Nature and Origin of Compression in Passive Margins, vol 306. Geological Society, London, Special Publications, pp 1–26

    Google Scholar 

  • Duncan RA (1981) Hotspots in the southern oceans - an absolute frame of reference for motion of the Gondwana continents. Tectonophysics 74:29–42

    Google Scholar 

  • Eagles G (2007) New angles on South Atlantic opening. Geophys J Int 168(1):353–361

    Google Scholar 

  • Ernesto M, Marques LS, Piccirillo EM, Molina EC, Ussami N, Comin-Chiaramonti P, Bellieni G (2002) Paraná Magmatic Province - Tristan da Cunha plume system: fixed versus mobile plume, petrogenetic considerations and alternative heat sources. J Volcanol Geotherm Res 118:15–36

    Google Scholar 

  • Ferrari AL, Riccomini C (1999) Campo de esforços Plio-Pleistocênico na Ilha da Trindade (Oceano Atlântico Sul, Brasil) e sua relação com a tectônica regional. Rev Bras Geosci 29(2):195–202

    Google Scholar 

  • Fetter M, De Ros LF, Bruhn CHL (2009) Petrographic and seismic evidence for the depositional setting of giant turbidite reservoirs and the paleogeographic evolution of Campos Basin, offshore Brazil. Mar Pet Geol 26:824–853

    Google Scholar 

  • Fodor RV, McKee EH, Asmus HE (1983) K - Ar ages and the opening of the South Atlantic Ocean: basaltic rocks from the Brazilian margin. Mar Geol 54:M1–M8

    Google Scholar 

  • Fodor RV, Mukasa SB, Gomes CB, Cordani UG (1989) Ti-rich Eocene basaltic rocks, Abrolhos platform, offshore Brazil, 18 ° South: petrology with respect to South Atlantic magmatism. J Petrol 30:763–786

    Google Scholar 

  • Fornero SA, Marins GM, Lobo JT, Freire AFM, Lima EF (2019) Characterization of subaerial volcanic facies using acoustic image logs: Lithofacies and log-facies of a lava-flow deposit in the Brazilian pre-salt, deepwater of Santos Basin. Mar Pet Geol 99:156–174

    Google Scholar 

  • Foulger GR (2018) Origin of the South Atlantic igneous province. J Volcanol Geotherm Res 355:2–20

    Google Scholar 

  • França R, Mohriak WU (2009) Tectônica de sal das bacias do Espírito Santo e Mucuri. In: W. Mohriak, P. Szatmari & S. M. C. Anjos (organizadores), Sal: Geologia e Tectônica. Editora Beca, São Paulo. 286–301

  • Francheteau J, Le Pichon X (1972) Marginal fracture zones as structural framework of continental margins of South Atlantic Ocean. AAPG Bull 56(6):991–1007

    Google Scholar 

  • Fromm T, Jokat W, Ryberg T, Behrmann JH, Haberlan C, Weber M (2017) The onset of Walvis Ridge: plume influence at the continental margin. Tectonophysics 716:90–107

    Google Scholar 

  • Galvão ILG, Castro DL (2017) Contribution of global potential field data to the tectonic reconstruction of the Rio Grande Rise in the South Atlantic. Mar Pet Geol 86:932–949

    Google Scholar 

  • Gamboa LAP, Rabinowitz PD (1981) The Rio Grande fracture zone in the western South Atlantic and its tectonic implications. Earth Planet Sci Lett 52:410–418

    Google Scholar 

  • Gamboa LAP, Rabinowitz PD (1984) The evolution of the Rio Grande rise in the Southwest Atlantic Ocean. Mar Geol 58:35–58

    Google Scholar 

  • Gassmöller R, Dannberg J, Bredow E, Steinberger B, Torsvik TH (2016) Major influence of plume-ridge interaction, lithosphere thickness variations and global mantle flow on hotspot volcanism - the example of Tristan. -Geochemistry. G3 17(4):1454–1479

    Google Scholar 

  • Geraldes MC, Motoki A, Costa A, Mota CE, Mohriak WU (2012) Geochronology (Ar/Ar and K–Ar) of the South Atlantic post-break-up magmatism. In: Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) Conjugate Divergent Margins, vol 369. Geological Society, London, pp 41–74 Special Publications

    Google Scholar 

  • Gibson SA, Thompson RN, Leonardos OH, Dickin AP, Mitchell JG (1995) The late cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic potassic magmatism in SE Brazil. J Petrol 36:189–229

    Google Scholar 

  • Gibson SA, Thompson RN, Weska RK, Dickin AP (1997) Late Cretaceous rift-related upwelling and melting of the Trindade starting mantle plume head beneath western Brazil. Contrib Mineral Petrol 126:303–314

    Google Scholar 

  • Gladczenko TP, Hinz K, Eldholm O, Meyer H, Neben S, Skogseid J (1997) South Atlantic volcanic margins. J Geol Soc Lond 154:465–470

    Google Scholar 

  • Gordon AC, Mohriak WU (2015) Seismic volcano-stratigraphy in the basaltic complexes on the rifted margin of Pelotas Basin, Southeast Brazil, in Post PJ, Coleman J, Rosen NC, Brown DE, Roberts TA, Kahn P and Rowan M (eds.), Petroleum systems in “rift” basins, 34th Annual GCSSEPM Foundation Perkins-Rosen Research Conference, Expanded Abstracts. 748–786

    Google Scholar 

  • Graça MC, Kusznir N, Stanton NSG (2018) Crustal thickness mapping of the central South Atlantic and the geodynamic development of the Rio Grande Rise and Walvis Ridge. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2018.12.011

    Google Scholar 

  • Guimarães IP, Sial AN, Silva Filho AF (1982) Petrologia e geoquímica da província alcalina terciária Fortaleza, Ceará, in: Congresso Brasileiro de Geologia, 32, Salvador. 1982. Anais... Salvador, SBG. p. 577-588

  • Hall SA, Bird DE, McLean DJ, Towle PJ, Grant JV, Danque HA (2018) New constraints on the age of the opening of the South Atlantic basin. Mar Pet Geol 95:50–66

    Google Scholar 

  • Heine C, Zoethourt J, Muller RD (2013) Kinematics of the South Atlantic rift. Solid Earth 4:215–253. https://doi.org/10.5194/se-4-215-2013

    Article  Google Scholar 

  • Hinz K (1981) A hypothesis on terrestrial catastrophes: wedges of very thick oceanward dipping layers beneath passive continental margins. Geol Jahrb E-22:3–28

    Google Scholar 

  • Hoernle K, Rohde J, Hauff F, Garbe-Schonberg D, Homrighausen S, Werner R, Morgan JP (2015) How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nat Commun 6(1):1–10

    Google Scholar 

  • Homrighausen S, Hoernle K, Hauff F, Wartho J-A, van den Bogaard P, Garbe-Schonberg D (2019) New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin. Geochim Cosmochim Acta 245:16–34

    Google Scholar 

  • Jeffery AJ, Gertisser R (2018) Peralkaline felsic Magmatism of the Atlantic Islands. Front Earth Sci 6:145 1–42

    Google Scholar 

  • Jokat W, Reents S (2017) Hotspot volcanism in the southern South Atlantic: geophysical constraints on the evolution of the southern Walvis ridge and the discovery seamounts. Tectonophysics 716:77–89

    Google Scholar 

  • Koopmann H, Schreckenberger B, Franke D, Becker K, Schnabel M (2014) The late rifting phase and continental break-up of the southern South Atlantic: the mode and timing of volcanic rifting and formation of earliest oceanic crust. In: Wright TJ, Ayele A, Ferguson DJ, Kidane T, Vye-Brown C (eds) Magmatic rifting and active volcanism, vol 420. Geological Society, London, Special Publications, pp 315–340

    Google Scholar 

  • Kumar N (1979) Origin of “paired” aseismic rises: Ceará and Sierra Leone rises in the equatorial, and the Rio Grande Rise and Walvis Ridge in the South Atlantic, Marine Geology, 30(3-4), 175–191

    Google Scholar 

  • Leão ZMAN (2002) Abrolhos, BA - O complexo recifal mais extenso do Atlântico Sul. In: Schobbenhaus,C.; Campos,D.A. ; Queiroz,E.T.; Winge,M.; Berbert-Born,M.L.C. (Edits.) Sítios Geológicos e Paleontológicos do Brasil. 1. ed. Brasilia: DNPM/CPRM - Comissão Brasileira de Sítios Geológicos e Paleobiológicos (SIGEP), 2002. 1:345-359

  • Lima PRAS (1974) Geologia da Ilha de Cabo Frio,RJ, Anais do XXVIII Congresso Brasileiro de Geologia, Porto Alegre, Resumo das comunicações, Boletim n. 1: 176–181

  • Lopes RP, Ulbrich MNC (2015) Geochemistry of the alkaline volcanic-subvolcanic rocks of the Fernando de Noronha archipelago, southern Atlantic Ocean. Braz J Geol 45(2):307–333

    Google Scholar 

  • Macdonald D, Gomez-Perez I, Franzese J, Spalletti L, Lawve L, Gahagan I, Dalziel I, Thomas C, Trewin N, Hole M, Paton D (2003) Mesozoic break-up of SW Gondwana: implications for regional hydrocarbon potential of the southern South Atlantic. Mar Pet Geol 20:287–308

    Google Scholar 

  • Magee C, Maharaj SM, Wrona T, Jackson CAL (2015) Controls on the expression of igneous intrusions in seismic reflection data. Geosphere 11(4):1024–1041

    Google Scholar 

  • Maia M, Sichel S, Briais A, Brunelli D, Ligi M, Ferreira N, Campos T, Mougell B, Brehme I, Hémond C, Motoki A, Moura D, Scalabrin C, Pessanha I, Alves E, Ayres A, Oliveira P (2016) Extreme mantle uplift and exhumation along a transpressive transform fault. Nat Geosci 9:619–623

    Google Scholar 

  • Marzoli A, Melluso L, Morra V, Renne PR, Sgrosso I, D’Antonio M, Morais LD, Morais EAA, Ricci G (1999) Geochronology and petrology of cretaceous basaltic magmatism in the Kwanza basin (western Angola), and relationships with the Paraná-Etendeka continental flood basalt province. J Geodyn 28:341–356

    Google Scholar 

  • Marzoli A, Piccirillo EM, Renne PR, Bellieni G, Iacumin M, Nyobe JB, Tongwa AT (2000) The Cameroon Volcanic Line revisited: petrogenesis of continental basaltic magmas from lithospheric and asthenospheric mantle sources. J Petrol 41(1):87–109

    Google Scholar 

  • Matte RR (2013) Sedimentologia e estratigrafia das ilhas de Santa Bárbara e Redonda, Arquipélago dos Abrolhos, sul da Bahia. Boletim de Geociencias da Petrobras 21(2):369–384

    Google Scholar 

  • Matthews KJ, Müller RD, Wessel P, Whittaker JM (2011) The tectonic fabric of the ocean basins. J Geophys Res 116(B12109) 28

  • Maus S, Barckhausen U, Berkenbosch H, Bournas N, Brozena J, Childers V, Dostaler F, Fairhead JD, Finn C, Frese RRB, Gaina C, Golynsky S, Kucks R, Luhr H, Milligan P, Muller RD, Olesen O, Pilkington M, Saltus R, Schreckenberger B, Thebault E, Tontini FC (2009) EMAG2: a 2-arc min resolution earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements. Geochem Geophys Geosyst 10:1–12. https://doi.org/10.1029/2009GC002471

    Article  Google Scholar 

  • McDermott C, Lonergan L, Collier JS, McDermott KG, Bellingham P (2018) Characterization of seaward-dipping reflectors along the South American Atlantic margin and implications for continental breakup. Tectonics 37:3303–3327

    Google Scholar 

  • Meisling KE, Cobbold PR, Mount VS (2001) Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bull 11:1903–1924

    Google Scholar 

  • Mello MR, Azambuja Filho NC, Bender AA, Barbanti SM, Mohriak W, Schmitt P, Jesus CLC (2013) The Namibian and Brazilian southern South Atlantic petroleum systems: are they comparable analogues? In: Mohriak, W. U., Danforth, A., Post, P. J., Brown, D. E., Tari, G. C., Nemcok, M. & Sinha, S. T. (eds) Conjugate Divergent Margins. Geological Society, London, Special Publications 369:249–266

  • Mendonça PMM, Spadini AR, Milani EJ (2004) Exploração na Petrobras: 50 anos de sucesso. Boletim de Geociências da Petrobras, Rio de Janeiro 12(1):9–59

    Google Scholar 

  • Mizusaki AMP, Mohriak WU (1992) Sequências vulcano-sedimentares na região da plataforma continental de Cabo Frio, RJ. Anais do XXXVII Congresso Brasileiro de Geologia - Resumos Expandidos, São Paulo, SP, v. 2, p. 468–469

  • Mizusaki AMP and Thomaz Filho A. (2004) O magmatismo pós-Paleozóico no Brasil. In: V. Mantesso-Neto, A. Bartorelli, C.D.R. Carneiro and B.B. Brito-Neves (eds.), Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida, Beca Produções Culturais Ltda., São Paulo, Cap. XVII, p. 281–291

  • Mizusaki AMP, Mohriak WU (1992) Sequências vulcano-sedimentares na região da plataforma continental de Cabo Frio, RJ. Anais do XXXVII Congresso Brasileiro de Geologia - Resumos Expandidos, São Paulo, SP 2:468–469

  • Mizusaki AMP, Thomaz-Filho A, Milani EJ, Césero P (2002) Mesozoic and Cenozoic igneous activity and its tectonic control in northeastern Brazil. J S Am Earth Sci 15(2):183–198

    Google Scholar 

  • Mohriak WU 2001. Salt tectonics, volcanic centers, fracture zones and their relationship with the origin and evolution of the South Atlantic Ocean: geophysical evidence in the Brazilian and West African margins. 7 th International Congress of the Brazilian Geophysical Society, Salvador - Bahia – Brazil, October 28–31, 2001, Expanded Abstract 1594–1597

  • Mohriak WU (2003) Bacias Sedimentares da Margem Continental Brasileira. In: L. A. Bizzi, C. Schobbenhaus, R. M. Vidotti, J. H. Gonçalves (eds.), Geologia, Tectônica e Recursos Minerais do Brasil, Capítulo III, p. 87–165, CPRM, Brasília

    Google Scholar 

  • Mohriak WU (2004) Recursos energéticos associados à ativação tectônica Mesozoico-Cenozoica da América do Sul. In: V. Mantesso – Neto, A. Bartorelli, C.D.R. Carneiro and B.B. Brito-Neves (eds.), Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida, Beca Produções Culturais Ltda., São Paulo, capítulo XVIII, p. 293–318

  • Mohriak WU (2006) Interpretação geológica e geofísica da Bacia do Espírito Santo e da região de Abrolhos: petrografia, datação radiométrica e visualização sísmica das rochas vulcânicas. Boletim de Geociências da Petrobras 14(1):133–142

    Google Scholar 

  • Mohriak WU, Fainstein R (2012) Phanerozoic regional geology of the Eastern Brazilian margin. In: Roberts D, Bally A (eds) Phanerozoic passive margins, Cratonic basins and global tectonic maps. Chapter, vol 7. Elsevier B.V., pp 223–282. https://doi.org/10.1016/B978-0-444-56357-6.00006-8

    Google Scholar 

  • Mohriak WU, Torres JC (2017) Levantamentos geofísicos para a delimitação da margem continental brasileira, Revista USP, São Paulo, 113:59–80

  • Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) (1995) Conjugate Divergent Margins, vol 369. Geological Society, London, Special Publications, pp 249–266

    Google Scholar 

  • Mohriak WU, Nemcok M, Enciso G (2008) South Atlantic divergent margin evolution: rift-border uplift and salt tectonics in the basins of SE Brazil. In: Pankhurst RJ, Trouw RAJ, Brito Neves BB, de Wit MJ (eds) West Gondwana pre-Cenozoic correlations across the South Atlantic region, vol 294. Geological Society, London, Special Publications, pp 365–398

    Google Scholar 

  • Mohriak WU, Nóbrega M, Odegard ME, Gomes BS, Dickson WG (2010) Geological and geophysical interpretation of the Rio Grande Rise, south-eastern Brazilian margin: extensional tectonics and rifting of continental and oceanic crusts. Pet Geosci 16:231–245

    Google Scholar 

  • Mohriak WU, Fainstein R (2012) Phanerozoic regional geology of the Eastern Brazilian margin. In: Roberts D, Bally A (eds) Phanerozoic passive margins, Cratonic basins and global tectonic maps. Elsevier B.V 1(7):223–282

  • Morgan WJ (1983) Hot-spot tracks and the early rifting of the Atlantic. Tectonophysics 94:123–139

    Google Scholar 

  • Motoki A, Motoki KF (2013) Gravimetric structure and growth history of the volcanic seamounts of the Vitória-Trindade chain, state of Espírito Santo, Brazil, based on the satellite-derived data, 13th International Congress of the Brazilian Geophysical Society. Abstracts, Rio de Janeiro, Brazil, pp 1707–1712

    Google Scholar 

  • Motoki A, Sichel SE, Campos TFC, Vargas T, Soares R and Motoki KF (2010) Morfologia abyssal em torno do Arquipélago de São Pedro e São Paulo, Oceano Atlântico Equatorial, e sua relação ao tectonismo de soerguimento ativo. Revista de Geografia. Recife: UFPE – DCG/NAPA, v. especial VIII SINAGEO, n. 2, Set. 2010, p.318–330

  • Motoki A, Motoki KF, Melo DP (2012) Caracterização da morfologia submarina da Cadeia Vitória-Trindade e áreas adjacentes, ES, com base na batimetria predita do TOPO versão 14.1. Revista Brasileira de Geomorfologia 13(2):151–170

    Google Scholar 

  • Motoki KF, Motoki A, Sichel SE and Campos TFC (2013) Exumação do manto na cadeia peridotítica de São Pedro e São Paulo, Oceano Atlântico Equatorial: Protrusão de serpentina, megamullion ou compressão tectônica ? 13th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, August 26–29, 2013. Abstracts CD, sbgf_4163, 6 p

  • Motoki KF, Motoki A, Sichel SE (2014) Gravimetric structure for the abyssal mantle massif of Saint Peter and Saint Paul peridotite ridge, Equatorial Atlantic Ocean, and its relation to active uplift. Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences) 86(2):571–588

    Google Scholar 

  • Moulin M, Aslanian D, Unternehr P (2010) A new starting point for the South and Equatorial Atlantic Ocean. Earth Sci Rev 98:1–37

    Google Scholar 

  • Müller RD, Royer JY, Lawver LA (1993) Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21(3):275–278

    Google Scholar 

  • Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9:Q04006. https://doi.org/10.1029/2007GC001743

    Article  Google Scholar 

  • Mutter JC, Talwani M, Stoffa PL (1982) Origin of seaward-dipping reflectors in oceanic crust off the Norwegian margin by “subaerial sea-floor spreading”. Geology 10:353–357

    Google Scholar 

  • O’Connor JM, Duncan RA (1990) Evolution of the Walvis Ridge-Rio Grande Rise hot spot system: implications for African and South American plate motions over plumes. J Geophys Res 95(B11):17,475–17,502

    Google Scholar 

  • O’Connor JM, Jokat W (2015) Tracking the Tristan-Gough mantle plume using discrete chains of intraplate volcanic centers buried in the Walvis Ridge. Geology 43(8):715–718

    Google Scholar 

  • O’Connor JM, Roex AP (1992) South Atlantic hot spot plume systems: 1. Distribution of volcanism in time and space. Earth Planet Sci Lett 113:343–364

    Google Scholar 

  • Ojeda HAO (1982) Structural framework, stratigraphy, and evolution of Brazilian marginal basins. AAPG Bull 66(6):732–749

    Google Scholar 

  • Oliveira LC, Oliveira RMAG, Pereira E (2018) Seismic characteristics of the onshore Abrolhos magmatism, East-Brazilian continental margin. Mar Pet Geol 89:488–499

    Google Scholar 

  • Oreiro SG, Cupertino JA, Szatmari P, Thomaz Filho A (2008) Influence of pre-salt alignments in post-Aptian magmatism in the Cabo Frio High and its surroundings, Santos and Campos basins, SE Brazil: an example of non-plume-related magmatism. J South Am Earth Sci 25:116–131

    Google Scholar 

  • Paton DA, Pindell J, McDermott K, Bellingham P, Horn B (2017) Evolution of seaward-dipping reflectors at the onset of oceanic crust formation at volcanic passive margins: insights from the South Atlantic. Geology 45(5):439–442

    Google Scholar 

  • Peate DW (1997) The Parana-Etendeka Province. In: Mahoney JJ, Coffin MF (eds) Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism. American Geophysical Union, Washington, D.C., pp 217–245

    Google Scholar 

  • Pérez-Díaz L, Eagles G (2014) Constraining South Atlantic growth with seafloor spreading data. Tectonics 33. https://doi.org/10.1002/2014TC003644

    Google Scholar 

  • Pérez-Díaz L and Eagles G (2017) South Atlantic paleobathymetry since early Cretaceous, Nat Sci Rep, 7, 11819, 1–16

  • Perlingeiro G, Vasconcelos PM, Knesel KM, Thiede DS, Cordani U (2013) 40Ar/39Ar geochronology of the Fernando de Noronha archipelago and implications for the origin of alkaline volcanism in the NE Brazil. J Volcanol Geotherm Res 249:140–154

    Google Scholar 

  • Peyve AA (2010) Tectonics and Magmatism in Eastern South America and the Brazil Basin of the Atlantic in the Phanerozoic. Geotectonics 44(1):60–75

    Google Scholar 

  • Pires GLC, Bongiolo EM (2016) The nephelinitic–phonolitic volcanism of the Trindade Island (South Atlantic Ocean): review of the stratigraphy, and inferences on the volcanic styles and sources of nephelinites. J S Am Earth Sci 72:49–62. https://doi.org/10.1016/j.jsames.2016.07.008

    Article  Google Scholar 

  • Pires GLC, Bongiolo EM, Geraldes MC, Renac C, Santos AC, Jourdan F, Neumann R (2016) New 40Ar/39Ar ages and revised 40K / 40Ar data from nephelinitic–phonolitic volcanic successions of the Trindade Island (South Atlantic Ocean). J Volcanol Geotherm Res 327:531–538

    Google Scholar 

  • Planke S, Symonds PA, Alvestad E, Skogseid J (2000) Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins. J Geophys Res 105(B8):19,335–19,351

    Google Scholar 

  • Quirk DG, Hertle M, Jpeppesen JW, Raven M, Mohriak WU, Kann DJ, Norgaard M, Howe MJ, Hsu D, Coffey B, Mendes MP (2013) Rifting, subsidence and continental break-up above a mantle plume in the central South Atlantic. In: Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) Conjugate divergent margins, vol 369. Geological Society, London, Special Publications, pp 185–214

    Google Scholar 

  • Renne PR, Ernesto M, Pacca IG, Coe RS, Glen JM, Prévot M, and Perrin M (1992) The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary. Science 258:975–979

    Google Scholar 

  • Renne, PR, Glen JM, Milner SC and Duncan AR (1996) Age of Etendeka flood volcanism and associated intrusions in southwestern Africa. Geology 24(7):659–662

    Google Scholar 

  • Ribeiro, A. C., C. Riccomini, and J. A. D. Leite (2018), Origin of the largest South American transcontinental water divide, Nature Scientific Reports, 8:17144

  • Richards MA, Duncan RA, Courtillot VE (1989) Flood basalts and hot-spot tracks: plume heads and tails. Science 246:103–107

    Google Scholar 

  • Rohde JK, van den Bogaard P, Hoernle K, Hauff F, Werner R (2013a) Evidence for an age progression along the Tristan-Gough volcanic track from new 40Ar/39Ar ages on phenocryst phases. Tectonophysics 604:60–71

    Google Scholar 

  • Rohde J, Hoernle K, Hauff F, Werner R, O’Connor J, Class C, Garbe-Schönberg D, Jokat W (2013b) 70 Ma chemical zonation of the Tristan-Gough hotspot track. Geology 41(3):335–338

    Google Scholar 

  • Ryan WB, Coplan JO, Melkonian AK, Carbotte SM (2008) Using GeoMapApp as an analytical tool for the journey between data visualization and synthesis, Abstract IN43-1163, Fall Meeting. American Geophysical Union, San Francisco, CA

    Google Scholar 

  • Sadowski GR, Dias Neto CM (1981) O lineamento sismo-tectônico do Cabo Frio. Rev Bras Geosci 11(4):209–212

    Google Scholar 

  • Sandwell DT, Garcia E, Soofi K, Wessel P, Smith WHF (2013) Towards 1 mGal global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead Edge 32(8):892–899

    Google Scholar 

  • Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67. https://doi.org/10.1126/science.1258213

    Article  Google Scholar 

  • Santos AC, Rodrigues SW, Geraldes MC, Garrido TCV (2015) Geology of Martin Vaz Island, South Atlantic, Brazil. J Maps 11(2):314–322. https://doi.org/10.1080/17445647.2014.936913

    Article  Google Scholar 

  • Santos, AC, Mohriak WU, Geraldes MC, Santos WH, Ponte-Neto CF, Stanton N (2018) Compiled potential field data and seismic surveys across the Eastern Brazilian continental margin integrated with new magnetometric profiles and stratigraphic configuration for Trindade Island, South Atlantic, Brazil. International Geology Review 1–17. https://doi.org/10.1080/00206814.2018.1542634

    Google Scholar 

  • Santos RV, Ganade CE, Lacasse CM, Costa ISL, Pessanha I, Frazão EP, Dantas EL, and Cavalcante JA (2019) Dating Gondwanan continental crust at the Rio Grande Rise, South Atlantic, Terra Nova 00:1–6. https://doi.org/10.1080/00206814.2018.1542634

    Google Scholar 

  • Schmidt R, Schmincke H-U (2000) Seamounts and island building, in the encyclopedia of volcanoes, edited by H. Sigurdsson, B. Houghton, S. McNutt, H. Rymer and J. Stix, Academic Press, 383-402

  • Schmincke HU and Sumita M(1998) Volcanic evolution of Gran Canaria reconstructed from apron sediments: synthesis of Vicap project drilling. In:Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., and Duffield, W. (Eds.), 1998, Proceedings of the Ocean Drilling Program, Scientific Results 157(27):443–469

  • Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev 113:212–270

    Google Scholar 

  • Sichel SE, Motoki A, Campos TFC, Soares R, Motoki KF (2009) On-going uplift rate of the Saint Peter Saint Paul Peridotite Ridge, Equatorial Atlantic Ocean, base on geomorphologic analyses of wave-cut bench and 14 C dating for coral fossils, 11th International Congress of the Brazilian Geophysical Society, sbgf2009-226, Expanded Abstracts, 4pp

  • Sichel SE, Motoki A, TFC C, Angel-Amaya J, Vargas T, Maia M, Baptista Neto JA, Koga MS, Motoki KF, LSA S, Gorini MA, Szatmari P (2011) Origin and characterization of the mantle rocks of the Saint Peter and Saint Paul Rocks, Equatorial Atlantic Ocean. Boletim de Geociências da Petrobras 20(1–2):97–128

    Google Scholar 

  • Skolotnev SG, Peive AA (2017) Composition, structure, origin, and evolution of off-axis linear volcanic structures of the Brazil Basin, South Atlantic. Geotectonics 51(1):53–73

    Google Scholar 

  • Skolotnev SG, Peyve AA, Turko NN (2010) New data on the structure of the Vitoria–Trindade Seamount chain (Western Brazil Basin, South Atlantic). Dokl Earth Sci 431(2):435–440

    Google Scholar 

  • Skolotnev SG, Bylinskaya ME, Golovina LA, Ipateva IS (2011) First data on the age of rocks from the central part of the Vitória–Trindade ridge (Brazil Basin, South Atlantic). Dokl Earth Sci 437(1):316–322

    Google Scholar 

  • Sobreira JFF, França RL (2006) Um modelo tectono-magmático alternativo para a região do Complexo Vulcânico de Abrolhos. Boletim de Geociências da Petrobras 14(1):143–147

    Google Scholar 

  • Souza, KG, Fontana RL, Mascle J, Macedo JM, Mohriak WU, Hinz K (1993) The southern Brazilian margin: an example of a South Atlantic volcanic margin, Third International Congress of the Brazilian Geophysical Society, Rio de Janeiro, RJ, 7–11 November 1993, Sociedade Brasileira de Geologia, Rio de Janeiro, Abstracts, vol 2, pp. 1336–1341

  • Stanton N, Kusznir N, Gordon A, Schmitt R (2019) Architecture and tectono-magmatic evolution of the Campos rifted margin: control of OCT structure by basement inheritance. Mar Pet Geol 100:43–59

    Google Scholar 

  • Steinberger B (2000) Plumes in a convecting mantle' models and observations for individual hotspots. J Geophys Res 105(B5):11,127–11,152

    Google Scholar 

  • Stica JM, Zalán PV, Ferrari AL (2014) The evolution of rifting on the volcanic margin of the Pelotas Basin and the contextualization of the Paraná-Etendeka LIP in the separation of Gondwana in the South Atlantic. Mar Pet Geol 50:1–21

    Google Scholar 

  • Teixeira W, Cordani UG, Menor EA, Teixeira MG, Linsker R (2003) Arquipélago Fernando de Noronha - O paraíso do vulcão. Terra Virgem, São Paulo

    Google Scholar 

  • Thiede J (1977) Subsidence of aseismic ridges: evidence from sediments on Rio Grande Rise (Southwest Atlantic Ocean). Am Assoc Pet Geol Bull 61(6):929–940

    Google Scholar 

  • Thomaz Filho A, Rodrigues AL (1999) O Alinhamento de Rochas Alcalinas Poços de Caldas-Cabo Frio (RJ) e sua continuidade na Cadeia Vitória-Trindade. Rev Bras Geosci 29(2):189–194

    Google Scholar 

  • Thomaz Filho A, Mizusaki AMP, Milani EJ, Cesero P (2000) Rifting and magmatism associated with the South America and Africa breakup. Rev Bras Geosci 30(1):017–019

    Google Scholar 

  • Thomaz Filho A, Cesero P, Mizusaki AMP, Leão JG (2005) Hotspot volcanic tracks and their implications for South American Plate motion, Campos Basin (Rio de Janeiro State), Brazil. J S Am Earth Sci 18:383–389

    Google Scholar 

  • Thomaz Filho A, Mizusaki AMP, Antonioli L (2008) Magmatismo nas bacias sedimentares brasileiras e sua influência na geologia do petróleo. Revista Brasileira de Geociências 38(2 - suplemento):128–137

    Google Scholar 

  • Thompson G, Humphris S, Schilling JG (1983) Petrology and geochemistry of basaltic rocks from Rio Grande Rise, South Atlantic Deep-sea Drilling Project, LEG-72, HOLE-516F. Initial Rep Deep Sea Drill Proj 72(DEC):457–466

    Google Scholar 

  • Thompson RN, Gibson SA, Mitchell JG, Dickin AP, Leonardos OH, Brod JA, Greenwood JC (1998) Migrating cretaceous-Eocene magmatism in the Serra do Mar alkaline Province, SE Brazil: melts from the deflected Trindade mantle plume? J Petrol 39(8):1493–1526

    Google Scholar 

  • Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int 177:1315–1333

    Google Scholar 

  • Ulbrich MNC, Marques LS, Lopes RP (2004) As ilhas vulcânicas brasileiras: Fernando de Noronha e Trindade. In: Mantesso-Neto, V.; Bartorelli, A.; Carneiro, C. D. R.; Brito-Neves, B. B. (eds.), Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. Editora Beca, Chapter XXX1:514–555

  • Ussami N, Chaves CAM, Marques LS, Ernesto M (2012) Origin of the Rio Grande RiseeWalvis Ridge reviewed integrating paleogeographic reconstruction, isotope geochemistry and flexural modelling. Geol Soc Lond Spec Publ 369:129–146

    Google Scholar 

  • Watts AB, ten Brink US, Buhl P, Brocher TM (1985) A multichannel seismic study of lithospheric flexure across the Hawaiian – Emperor seamount chain. Nature 315:105–111

    Google Scholar 

  • White RS, McKenzie DP (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7730

    Google Scholar 

  • Wilson M (1992) Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of Lower Cretaceous super-plume activity? In: Storey BC, Alabaster T and Pankhurst RJ (eds), Magmatism and the Causes of Continental Break-up, Geological Society Special Publication, 68, 241–255.

  • Xu W, Ruch J, Jónsson S (2015) Birth of two volcanic islands in the southern Red Sea. Nat Commun 6:7104. https://doi.org/10.1038/ncomms8104

    Article  Google Scholar 

  • Zhao D (2007) Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res 12:335–355

    Google Scholar 

Download references

Acknowledgments

I thank the organizing committee of the First Brazilian Symposium on Marine Geology and Geophysics for their kind invitation to present a special lecture at the successful meeting that was held in Rio de Janeiro in November 2018, and their indication to prepare a full review paper for the special publication “From the Coastal Zone to the Deep Sea” in the GeoMarine Letters.

I am grateful to several colleagues at Petrobras, Rio de Janeiro State University, University of São Paulo, and other academic and research institutions for their technical contributions, lifelong cooperation, and enthusiastic discussions on the geology of the volcanic islands in the South Atlantic, particularly P. Szatmari, M. Geraldes, and A. C. Santos. I thank A. P. Bischoff (University of Canterbury, New Zealand) for reading the first draft and providing enlightening suggestions. I also express my gratitude to two anonymous referees who provided a most thorough critical review of the manuscript, and provided many detailed and constructive comments that substantially improved the scientific contents, organization and focus of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Webster Mohriak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohriak, W. Genesis and evolution of the South Atlantic volcanic islands offshore Brazil. Geo-Mar Lett 40, 1–33 (2020). https://doi.org/10.1007/s00367-019-00631-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-019-00631-w

Navigation