Skip to main content
Log in

On Krylov solutions to infinite-dimensional inverse linear problems

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We discuss, in the context of inverse linear problems in Hilbert space, the notion of the associated infinite-dimensional Krylov subspace and we produce necessary and sufficient conditions for the Krylov-solvability of a given inverse problem, together with a series of model examples and numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, For Sale by the Superintendent of Documents, vol. 55. U.S. Government Printing Office, Washington, DC (1964)

    Google Scholar 

  2. Brown, P.N., Walker, H.F.: GMRES on (nearly) singular systems. SIAM J. Matrix Anal. Appl. 18, 37–51 (1997)

    Article  MathSciNet  Google Scholar 

  3. Caruso, N.A.: On Krylov Methods in Infinite-Dimensional Hilbert Space. Ph.D. thesis, SISSA Trieste (2019)

  4. Caruso, N.A., Michelangeli, A.: Convergence of the conjugate gradient method with unbounded operators. arXiv:1908.10110

  5. Caruso, N.A., Michelangeli, A., Novati, P.: Truncation and convergence issues for bounded linear inverse problems in Hilbert space (2018). arXiv:1811.08195

  6. Cipra, B.A.: The best of the 20th century: editors name top 10 algorithms. SIAM News 33, 1–2 (2005)

    Google Scholar 

  7. Daniel, J.W.: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal. 4, 10–26 (1967)

    Article  MathSciNet  Google Scholar 

  8. Dongarra, J., Sullivan, F.: The top 10 algorithms (guest editors’ intruduction). Comput. Sci. Eng. 2, 22–23 (2000)

    Article  Google Scholar 

  9. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and Its Applications, vol. 375. Kluwer Academic Publishers Group, Dordrecht (1996)

    Book  Google Scholar 

  10. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  Google Scholar 

  11. Freund, R.W., Hochbruck, M.: On the use of two QMR algorithms for solving singular systems and applications in Markov chain modeling. Numer. Linear Algebra Appl. 1, 403–420 (1994)

    Article  MathSciNet  Google Scholar 

  12. Gasparo, M.G., Papini, A., Pasquali, A.: Some properties of GMRES in Hilbert spaces. Numer. Funct. Anal. Optim. 29, 1276–1285 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gazzola, S., Hansen, P.C., Nagy, J.G.: IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems. Numer. Algorithms 81, 773–811 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gehér, L.: Cyclic vectors of a cyclic operator span the space. Proc. Am. Math. Soc. 33, 109–110 (1972)

    Article  MathSciNet  Google Scholar 

  15. Halmos, P.R.: A Hilbert Space Problem Book, Graduate Texts in Mathematics, Encyclopedia of Mathematics and Its Applications, vol. 19, 2nd edn, p. 17. Springer, New York (1982)

    Google Scholar 

  16. Hanke, M.: Conjugate Gradient Type Methods for Ill-Posed Problems. Pitman Research Notes in Mathematics Series, vol. 327. Longman Scientific & Technical, Harlow (1995)

    Google Scholar 

  17. Hansen, P.C.: Regularization Tools—A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems. http://www.imm.dtu.dk/~pcha/Regutools/. Accessed Aug 2019

  18. Herzog, R., Sachs, E.: Superlinear convergence of Krylov subspace methods for self-adjoint problems in Hilbert space. SIAM J. Numer. Anal. 53, 1304–1324 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kammerer, W.J., Nashed, M.Z.: On the convergence of the conjugate gradient method for singular linear operator equations. SIAM J. Numer. Anal. 9, 165–181 (1972)

    Article  MathSciNet  Google Scholar 

  20. Karush, W.: Convergence of a method of solving linear problems. Proc. Am. Math. Soc. 3, 839–851 (1952)

    Article  MathSciNet  Google Scholar 

  21. Liesen, J., Strakoš, Z.E.: Krylov Subspace Methods, Numerical Mathematics and Scientific Computation. Principles and Analysis. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  22. Nemirovskiy, A.S., Polyak, B.T.: Iterative methods for solving linear ill-posed problems under precise information. I. Izv. Akad. Nauk SSSR Tekhn. Kibernet. 203, 13–25 (1984)

    MathSciNet  Google Scholar 

  23. Nevanlinna, O.: Convergence of Iterations for Linear Equations, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1993)

    Book  Google Scholar 

  24. Novati, P.: A convergence result for some Krylov–Tikhonov methods in Hilbert spaces. Numer. Funct. Anal. Optim. 39, 655–666 (2018)

    Article  MathSciNet  Google Scholar 

  25. Quarteroni, A.: Numerical Models for Differential Problems, MS&A Modeling, Simulation and Applications, vol. 16, 3rd edn. Springer, Cham (2017)

    Google Scholar 

  26. Riesz, F., Sz.-Nagy, B.: Functional Analysis. Frederick Ungar Publishing Co., New York (1955) (Translated by Leo F. Boron)

  27. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  28. Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comput. 37, 105–126 (1981)

    Article  MathSciNet  Google Scholar 

  29. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  Google Scholar 

  30. Schmüdgen, K.: Unbounded Self-adjoint Operators on Hilbert Space. Graduate Texts in Mathematics, vol. 265. Springer, Dordrecht (2012)

    Book  Google Scholar 

  31. Winther, R.: Some superlinear convergence results for the conjugate gradient method. SIAM J. Numer. Anal. 17, 14–17 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Michelangeli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Some prototypical example operators

Appendix A. Some prototypical example operators

Let us review in this Appendix certain operators in Hilbert space that were useful in the course of our discussion, both as a source of examples or counter-examples, and as a playground to understand certain mechanisms typical of the infinite dimensionality.

1.1 A.1. The multiplication operator on \(\ell ^2({\mathbb {N}})\)

Let us denote with \((e_n)_{n\in \mathbb {N}}\) the canonical orthonormal basis of \(\ell ^2({\mathbb {N}})\). For a given bounded sequence \(a\equiv (a_n)_{n\in \mathbb {N}}\) in \({\mathbb {C}}\), the multiplication by a is the operator \(M^{(a)}:\ell ^2({\mathbb {N}})\rightarrow \ell ^2({\mathbb {N}})\) defined by \(M^{(a)}e_n=a_n e_n\) \(\forall n\in {\mathbb {N}}\) and then extended by linearity and density, in other words the operator given by the series

$$\begin{aligned} M^{(a)}\;=\;\sum _{n=1}^\infty a_n|e_{n}\rangle \langle e_n| \end{aligned}$$
(A.1)

(that converges strongly in the operator sense).

\(M^{(a)}\) is bounded with norm \(\Vert M^{(a)}\Vert _{\mathrm {op}}=\sup _n|a_n|\) and spectrum \(\sigma (M^{(a)})\) given by the closure in \({\mathbb {C}}\) of the set \(\{a_1,a_2,a_3\dots \}\). Its adjoint is the multiplication by \(a^*\). Thus, \(M^{(a)}\) is normal. \(M^{(a)}\) is self-adjoint whenever a is real and it is compact if \(\lim _{n\rightarrow \infty }a_n=0\).

1.2 A.2. The right-shift operator on \(\ell ^2({\mathbb {N}})\)

The operator \(R:\ell ^2({\mathbb {N}})\rightarrow \ell ^2({\mathbb {N}})\) defined by \(Re_n=e_{n+1}\) \(\forall n\in {\mathbb {N}}\) and then extended by linearity and density, in other words the operator given by the series

$$\begin{aligned} R\;=\;\sum _{n=1}^\infty |e_{n+1}\rangle \langle e_n| \end{aligned}$$
(A.2)

(that converges strongly in the operator sense), is called the right-shift operator.

R is an isometry (i.e., it is norm-preserving) with closed range \(\mathrm {ran} R=\{e_1\}^\perp \). In particular, it is bounded with \(\Vert R\Vert _{\mathrm {op}}=1\), yet not compact, it is injective, and invertible on its range, with bounded inverse

$$\begin{aligned} R^{-1}:\mathrm {ran} R\rightarrow {\mathcal {H}},\qquad R^{-1}\;=\;\sum _{n=1}^\infty |e_n\rangle \langle e_{n+1}|. \end{aligned}$$
(A.3)

The adjoint of R on \({\mathcal {H}}\) is the so-called left-shift operator, namely the everywhere defined and bounded operator \(L:{\mathcal {H}}\rightarrow {\mathcal {H}}\) defined by the (strongly convergent, in the operator sense) series

$$\begin{aligned} L\;=\;\sum _{n=1}^\infty |e_n\rangle \langle e_{n+1}|,\qquad L=R^*. \end{aligned}$$
(A.4)

Thus, L inverts R on \(\mathrm {ran} R\), i.e., \(LR=\mathbb {1}\), yet \(RL=\mathbb {1}-|e_1\rangle \langle e_1|\). One has \(\ker R^*=\mathrm {span}\{e_1\}\).

R and L have the same spectrum \(\sigma (R)=\sigma (L)=\{z\in {\mathbb {C}}\,|\,|z|\leqslant 1\}\), but R has no eigenvalue, whereas the eigenvalue of L form the open unit ball \(\{z\in {\mathbb {C}}\,|\,|z|< 1\}\).

1.3 A.3. The compact (weighted) right-shift operator on \(\ell ^2({\mathbb {N}})\)

This is the operator \({\mathcal {R}}:\ell ^2({\mathbb {N}})\rightarrow \ell ^2({\mathbb {N}})\) defined by the operator-norm convergent series

$$\begin{aligned} {\mathcal {R}}\;=\;\sum _{n=1}^\infty \sigma _n|e_{n+1}\rangle \langle e_n|, \end{aligned}$$
(A.5)

where \(\sigma \equiv (\sigma _n)_{n\in \mathbb {N}}\) is a given bounded sequence with \(0<\sigma _{n+1}<\sigma _n\) \(\forall n\in {\mathbb {N}}\) and \(\lim _{n\rightarrow \infty }\sigma _n=0\). Thus, \({\mathcal {R}}e_n=\sigma _n e_{n+1}\).

\({\mathcal {R}}\) is injective and compact, and (A.5) is its singular value decomposition, with norm \(\Vert {\mathcal {R}}\Vert _{\mathrm {op}}=\sigma _1\), \(\overline{\mathrm {ran}\,{\mathcal {R}}}=\{e_1\}^\perp \), and adjoint

$$\begin{aligned} {\mathcal {R}}^*\;=\;{\mathcal {L}}\;=\;\sum _{n=1}^\infty \sigma _n|e_n\rangle \langle e_{n+1}|. \end{aligned}$$
(A.6)

Thus, \({\mathcal {L}}{\mathcal {R}}=M^{(\sigma ^2)}\), the operator of multiplication by \((\sigma _n^2)_{n\in {\mathbb {N}}}\), whereas \({\mathcal {R}}{\mathcal {L}}=M^{(\sigma ^2)}-\sigma _1^2|e_1\rangle \langle e_1|\).

1.4 A.4. The compact (weighted) right-shift operator on \(\ell ^2({\mathbb {Z}})\)

This is the operator \({\mathcal {R}}:\ell ^2({\mathbb {Z}})\rightarrow \ell ^2({\mathbb {Z}})\) defined by the operator-norm convergent series

$$\begin{aligned} {\mathcal {R}}\;=\;\sum _{n\in {\mathbb {Z}}}\sigma _{|n|}\,|e_{n+1}\rangle \langle e_n|, \end{aligned}$$
(A.7)

where \(\sigma \equiv (\sigma _n)_{n\in \mathbb {N}_0}\) is a given bounded sequence with \(0<\sigma _{n+1}<\sigma _n\) \(\forall n\in {\mathbb {N}}_0\) and \(\lim _{n\rightarrow \infty }\sigma _n=0\). Thus, \({\mathcal {R}}e_n=\sigma _{|n|} e_{n+1}\).

\({\mathcal {R}}\) is injective and compact, with \(\mathrm {ran}\,{\mathcal {R}}\) dense in \({\mathcal {H}}\) and norm \(\Vert {\mathcal {R}}\Vert _{\mathrm {op}}=\sigma _0\). (A.7) gives the singular value decomposition. The adjoint of \({\mathcal {R}}\) is

$$\begin{aligned} {\mathcal {R}}^*\;=\;{\mathcal {L}}\;=\;\sum _{n\in {\mathbb {Z}}} \sigma _{|n|}\,|e_n\rangle \langle e_{n+1}|. \end{aligned}$$
(A.8)

Thus, \({\mathcal {L}}{\mathcal {R}}=M^{(\sigma ^2)}={\mathcal {R}}{\mathcal {L}}\).

The ‘inverse of \({\mathcal {R}}\) on its range’ is the densely defined, surjective, unbounded operator \({\mathcal {R}}^{-1}:\mathrm {ran}\,{\mathcal {R}}\rightarrow {\mathcal {H}}\) acting as

$$\begin{aligned} {\mathcal {R}}^{-1}\;=\;\sum _{n\in {\mathbb {Z}}}\,\frac{1}{\sigma _{|n|}}\,|e_n \rangle \langle e_{n+1}| \end{aligned}$$
(A.9)

as a series that converges on \(\mathrm {ran}\,{\mathcal {R}}\) in the strong operator sense.

1.5 A.5. The Volterra operator on \(L^2[0,1]\)

This is the operator \(V:L^2[0,1]\rightarrow L^2[0,1]\) defined by

$$\begin{aligned} (Vf)(x)\;=\;\int _0^x \!f(y)\,\mathrm {d}y,\qquad x\in [0,1]. \end{aligned}$$
(A.10)

V is compact and injective with spectrum \(\sigma (V)=\{0\}\) (thus, the spectral point 0 is not an eigenvalue) and norm \(\Vert V\Vert _{\mathrm {op}}=\frac{2}{\pi }\). It’s adjoint \(V^*\) acts as

$$\begin{aligned} (V^*f)(x)\;=\;\int _x^1 \!f(y)\,\mathrm {d}y,\qquad x\in [0,1], \end{aligned}$$
(A.11)

therefore \(V+V^*\) is the rank-one orthogonal projection

$$\begin{aligned} V+V^*\;=\;|{\mathbf {1}}\rangle \langle {\mathbf {1}}| \end{aligned}$$
(A.12)

onto the function \({\mathbf {1}}(x)=1\).

The singular value decomposition of V is

$$\begin{aligned} V\;=\;\sum _{n=0}^\infty \sigma _n|\psi _n\rangle \langle \varphi _n|,\qquad \quad \begin{array}{rl} \sigma _n\;=&{}\!\frac{2}{(2n+1)\pi } \\ \varphi _n(x)\;=&{}\!\sqrt{2}\,\cos \frac{(2n+1)\pi }{2}x \\ \psi _n(x)\;=&{}\!\sqrt{2}\,\sin \frac{(2n+1)\pi }{2}x, \end{array} \end{aligned}$$
(A.13)

where both \((\varphi _n)_{n\in {\mathbb {N}}_0}\) and \((\psi _n)_{n\in {\mathbb {N}}_0}\) are orthonormal bases of \(L^2[0,1]\).

Thus, \(\mathrm {ran} V\) is dense, but strictly contained in \({\mathcal {H}}\): for example, \({\mathbf {1}}\notin \mathrm {ran}V\). (Observe, though, that the dense subspace of the polynomials on [0, 1] is mapped by V onto the non-dense \(\mathrm {span}\{x,x^2,x^3,\dots \}\).)

In fact, V is invertible on its range, but does not have (everywhere defined) bounded inverse; yet \(V-z\mathbb {1}\) does, for any \(z\in {\mathbb {C}}{\setminus }\{0\}\) (recall that \(\sigma (V)=\{0\}\)), and

$$\begin{aligned} (z\mathbb {1}-V)^{-1}\psi \;=\;z^{-1}\psi +z^{-2}\!\int _0^x e^{\frac{x-y}{z}}\,\psi (y)\,\mathrm {d}y\qquad \forall \psi \in {\mathcal {H}},\; z\in {\mathbb {C}}{\setminus }\{0\}.\nonumber \\ \end{aligned}$$
(A.14)

The explicit action of the powers of V is

$$\begin{aligned} (V^n f)(x)\;=\;\frac{1}{\,(n-1)!}\int _0^x(x-y)^{n-1}f(y)\,\mathrm {d}y,\qquad n\in {\mathbb {N}}. \end{aligned}$$
(A.15)

1.6 A.6. The multiplication operator over \(\Omega \subset {\mathbb {C}}\) in \(L^2(\Omega )\)

This is the operator \(M:L^2(\Omega )\rightarrow L^2(\Omega )\), \(f\mapsto zf\), where \(\Omega \) is a bounded open region in \({\mathbb {C}}\). \(M_z\) is a normal bounded bijection with norm \(\Vert M_z\Vert _{\mathrm {op}}=\sup _{z\in \Omega }|z|\), spectrum \(\sigma (M_z)={\overline{\Omega }}\), and adjoint given by \(M_z^*f={\overline{z}}f\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, N., Michelangeli, A. & Novati, P. On Krylov solutions to infinite-dimensional inverse linear problems. Calcolo 56, 32 (2019). https://doi.org/10.1007/s10092-019-0330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0330-7

Keywords

Mathematics Subject Classification

Navigation