Skip to main content
Log in

Adaptive fixed point iterations for semilinear elliptic partial differential equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper we study the behaviour of finite dimensional fixed point iterations, induced by discretization of a continuous fixed point iteration defined within a Banach space setting. We show that the difference between the discrete sequence and its continuous analogue can be bounded in terms depending on the discretization of the infinite dimensional space and the contraction factor, defined by the continuous iteration. Furthermore, we show that the comparison between the finite dimensional and the continuous fixed point iteration naturally paves the way towards a general a posteriori error analysis that can be used within the framework of a fully adaptive solution procedure. In order to demonstrate our approach, we use the Galerkin approximation of singularly perturbed semilinear monotone problems. Our scheme combines the fixed point iteration with an adaptive finite element discretization procedure (based on a robust a posteriori error analysis), thereby leading to a fully adaptive fixed-point-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amrein, M., Melenk, J.M., Wihler, T.P.: An hp-adaptive Newton–Galerkin finite element procedure for semilinear boundary value problems. Math. Methods Appl. Sci. 40(6), 1973–1985 (2016). https://doi.org/10.1002/mma.4113

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrein, M., Wihler, T.P.: An adaptive Newton-method based on a dynamical systems approach. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2958–2973 (2014). https://doi.org/10.1016/j.cnsns.2014.02.010

    Article  MathSciNet  Google Scholar 

  3. Amrein, M., Wihler, T.P.: Fully adaptive Newton–Galerkin methods for semilinear elliptic partial differential equations. SIAM J. Sci. Comput. 37(4), A1637–A1657 (2015)

    Article  MathSciNet  Google Scholar 

  4. Amrein, M., Wihler, T.P.: An adaptive space-time Newton–Galerkin approach for semilinear singularly perturbed parabolic evolution equations. IMA J. Numer. Anal. 37(4), 2004–2019 (2017). https://doi.org/10.1093/imanum/drw049

    Article  MathSciNet  MATH  Google Scholar 

  5. Barles, G., Burdeau, J.: The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems. Commun. Partial Differ. Equ. 20(1–2), 129–178 (1995)

    Article  MathSciNet  Google Scholar 

  6. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  7. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations. Wiley Series in Mathematical and Computational Biology. Wiley, Chichester (2003)

    MATH  Google Scholar 

  8. Chaillou, A., Suri, M.: A posteriori estimation of the linearization error for strongly monotone nonlinear operators. J. Comput. Appl. Math. 205(1), 72–87 (2007). https://doi.org/10.1016/j.cam.2006.04.041

    Article  MathSciNet  MATH  Google Scholar 

  9. Congreve, S., Wihler, T.P.: An iterative finite element method for strongly monotone quasi-linear diffusion–reaction problems. Tech. Rep. 1506.08851. arXiv.org (2015)

  10. Deuflhard, P.: Newtons Method for Nonlinear Problems. Springer, Berlin (2004)

    Google Scholar 

  11. Edelstein-Keshet, L.: Mathematical Models in Biology. Classics in Applied Mathematics, vol. 46. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2005). Reprint of the 1988 original

    Book  Google Scholar 

  12. El Alaoui, L., Ern, A., Vohralík, M.: Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Eng. 200(37–40), 2782–2795 (2011). https://doi.org/10.1016/j.cma.2010.03.024

    Article  MathSciNet  MATH  Google Scholar 

  13. Ern, A., Vohralík, M.: Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35(4), A1761–A1791 (2013)

    Article  MathSciNet  Google Scholar 

  14. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society, Providence (RI) (1998). http://opac.inria.fr/record=b1094911. Réimpr. avec corrections : 1999, 2002

  15. Friedman, A., (ed.): Tutorials in Mathematical Biosciences. IV, Lecture Notes in Mathematics. Springer, Berlin; MBI Mathematical Biosciences Institute, Ohio State University, Columbus, OH (2008). Evolution and ecology, Mathematical Biosciences Subseries (1922)

  16. Garau, E.M., Morin, P., Zuppa, C.: Convergence of an adaptive Kačanov FEM for quasi-linear problems. Appl. Numer. Math. 61(4), 512–529 (2011). https://doi.org/10.1016/j.apnum.2010.12.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Heid, P., Wihler, T.P.: Adaptive iterative linearization-Galerkin methods for nonlinear problems. Tech. rep., http://arxiv.org (2018)

  18. Houston, P., Wihler, T.P.: An hp-adaptive Newton-Discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems. Tech. rep., http://arxiv.org (2016)

  19. Ni, W.M.: The mathematics of diffusion. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

  20. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives, vol. 14, 2nd edn. Springer, New York (2001)

    Book  Google Scholar 

  21. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  22. Zeidler, E.: Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems. Springer, New York (1986)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Amrein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amrein, M. Adaptive fixed point iterations for semilinear elliptic partial differential equations. Calcolo 56, 30 (2019). https://doi.org/10.1007/s10092-019-0321-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0321-8

Keywords

Mathematics Subject Classification

Navigation