Skip to main content
Log in

Common solutions to a finite family of inclusion problems and an infinite family of fixed point problems by a generalized viscosity implicit scheme including applications

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

This manuscript deals with two problems: the first one is a variational inclusion problem involving an m-accretive mapping and a finite family of inverse strongly accretive mappings, and the other one is a fixed point problem having an infinite family of strict pseudo-contraction mappings in Banach spaces. To approximate the common solution of these problems, we design a generalized viscosity implicit iterative scheme with Meir–Keeler contraction. A strong convergence result for the proposed iterative scheme is established. Applications based on convex minimization problem, linear inverse problem, variational inequality problem and equilibrium problem are derived from the main result. The numerical applicability of the main result and some applications are demonstrated by three examples. Our result extends, generalizes and unifies the previously known results given in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67(8), 2350–2360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baillon, J.B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et \(n\)-cycliquement monotones. Isr. J. Math. 26(2), 137–150 (1977)

    Article  MATH  Google Scholar 

  3. Browder, F.E., Petryshyn, W.V.: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20, 197–228 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruck, R.E.: Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math. Soc. 179, 251–262 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruck, R.E., Reich, S.: Accretive operators, Banach limits, and dual ergodic theorems. Bull. Acad. Polon. Sci. Sér. Sci. Math. 29(11–12), 585–589 (1982). 1981

    MathSciNet  MATH  Google Scholar 

  6. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20(1), 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  8. Cholamjiak, P.: A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces. Numer. Algorithms 71(4), 915–932 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic Publishers Group, Dordrecht (1990)

    Book  MATH  Google Scholar 

  10. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gibali, A., Thong, D.V.: Tseng type methods for solving inclusion problems and its applications. Calcolo, 55(4), Art. 49, 22, (2018)

  12. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker Inc., New York (1984)

    MATH  Google Scholar 

  13. Kazmi, K.R., Ali, R., Furkan, M.: Hybrid iterative method for split monotone variational inclusion problem and hierarchical fixed point problem for a finite family of nonexpansive mappings. Numer. Algorithms 79(2), 499–527 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kazmi, K.R., Rizvi, S.H.: An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping. Optim. Lett. 8(3), 1113–1124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khan, S.A., Suantai, S., Cholamjiak, W.: Shrinking projection methods involving inertial forward–backward splitting methods for inclusion problems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 645–656 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khuangsatung, W., Kangtunyakarn, A.: Algorithm of a new variational inclusion problem and strictly pseudononspreading mapping with application. Fixed Point Theory Appl. 2014, 1–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, J.K., Tuyen, T.M.: Approximation common zero of two accretive operators in Banach spaces. Appl. Math. Comput. 283, 265–281 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Kopecká, E., Reich, S.: Nonexpansive retracts in Banach spaces. In: Jachymski, J., Reich, S. (eds.) Fixed Point Theory and Its Applications, Volume 77 of Banach Center Publications, pp. 161–174. Polish Academy of Sciences Institute of Mathematics, Warsaw (2007)

  19. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. López, G., Martín-Márquez, V., Wang, F., Xu, H.K.: Forward-backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. Art. ID 109236, 25 (2012)

  21. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meir, A., Keeler, E.: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326–329 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mitrinović, D.S.: Analytic Inequalities. Springer, New York (1970)

    Book  MATH  Google Scholar 

  24. Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Isr. J. Math. 32(1), 44–58 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  26. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Plubtieng, S., Ungchittrakool, K.: Approximation of common fixed points for a countable family of relatively nonexpansive mappings in a Banach space and applications. Nonlinear Anal. 72(6), 2896–2908 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reich, S.: Fixed points of contractive functions. Boll. Un. Mat. Ital. 4(5), 26–42 (1972)

    MathSciNet  MATH  Google Scholar 

  29. Reich, S.: Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl. 44, 57–70 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reich, S.: Extension problems for accretive sets in Banach spaces. J. Funct. Anal. 26(4), 378–395 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reich, S.: Constructing zeros of accretive operators. Appl. Anal. 8(4), 349–352 (1978/1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Reich, S.: Constructing zeros of accretive operators. II. Appl. Anal. 9(3), 159–163 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67(2), 274–276 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reich, S.: Product formulas, nonlinear semigroups, and accretive operators. J. Funct. Anal. 36(2), 147–168 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75(1), 287–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Reich, S.: Book Review: Geometry of Banach spaces, duality mappings and nonlinear problems. Bull. Amer. Math. Soc. (N.S.) 26(2), 367–370 (1992)

    Article  MathSciNet  Google Scholar 

  37. Rockafellar, R.T.: Characterization of the subdifferentials of convex functions. Pacific J. Math. 17, 497–510 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  38. Salahuddin, Ahmad, M.K., Siddiqi, A.H.: Existence results for generalized nonlinear variational inclusions. Appl. Math. Lett. 18(8), 859–864 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Scherzer, O.: Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems. J. Math. Anal. Appl. 194(3), 911–933 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Song, Y., Ceng, L.: A general iteration scheme for variational inequality problem and common fixed point problems of nonexpansive mappings in \(q\)-uniformly smooth Banach spaces. J. Glob. Optim. 57(4), 1327–1348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Song, Y., Ceng, L.: Strong convergence of a general iterative algorithm for a finite family of accretive operators in Banach spaces. Fixed Point Theory Appl. 2015, 1–24 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305(1), 227–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Suzuki, T.: Moudafi’s viscosity approximations with Meir–Keeler contractions. J. Math. Anal. Appl. 325(1), 342–352 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Takahashi, S., Takahashi, W., Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147(1), 27–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116(3), 659–678 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zegeye, H., Shahzad, N.: Algorithms for solutions of variational inequalities in the set of common fixed points of finite family of \(\lambda \)-strictly pseudocontractive mappings. Numer. Funct. Anal. Optim. 36(6), 799–816 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, H., Su, Y.: Strong convergence theorems for strict pseudo-contractions in \(q\)-uniformly smooth Banach spaces. Nonlinear Anal. 70(9), 3236–3242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors appreciated the referees for providing valuable comments resulting into improvement of the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Vaish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaish, R., Ahmad, M.K. Common solutions to a finite family of inclusion problems and an infinite family of fixed point problems by a generalized viscosity implicit scheme including applications. Calcolo 56, 29 (2019). https://doi.org/10.1007/s10092-019-0324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0324-5

Keywords

Mathematics Subject Classification

Navigation