Skip to main content
Log in

Stabilized virtual element methods for the unsteady incompressible Navier–Stokes equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We present a stabilized virtual element method (VEM) for the unsteady incompressible Navier–Stokes equations. In this work, the concepts of stabilized methods are introduced into the VEM formulation. Thus, the variational form is enriched with stabilization terms that enable to circumvent the Babuška–Brezzi condition and to stabilize the solution for convection dominated flows. Numerical examples are presented to show the behavior of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. We call this mesh “hexagonal mesh” because the majority of the elements are hexagons. However, there are also elements with other number of vertices, which are mainly located on the boundary of the domain.

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazilevs, Y., Calo, V., Cottrell, J., Hughes, T., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197(1), 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(08), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. M2AN 50(3), 727–747 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier–Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benedetto, M., Berrone, S., Borio, A., Pieraccini, S., Scialo, S.: Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 311, 18–40 (2016)

    Article  MathSciNet  Google Scholar 

  12. Berrone, S.: Adaptive discretization of stationary and incompressible Navier–Stokes equations by stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 190(34), 4435–4455 (2001)

    Article  MathSciNet  Google Scholar 

  13. Biswas, G., Breuer, M., Durst, F.: Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers. J. Fluids Eng. 126(3), 362–374 (2004)

    Article  Google Scholar 

  14. Brenner, S.C., Sung, L.Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28, 1–46 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227–1240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brooks, A., Hughes, T.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bruneau, C.H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35(3), 326–348 (2006)

    Article  MATH  Google Scholar 

  19. Codina, R.: Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190(13), 1579–1599 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dettmer, W., Peric, D.: An analysis of the time integration algorithms for the finite element solutions of incompressible Navier–Stokes equations based on a stabilised formulation. Comput. Methods Appl. Mech. Eng. 192(9), 1177–1226 (2003). https://doi.org/10.1016/S0045-7825(02)00603-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Franca, L., Frey, S.: Stabilized finite element methods: II. The incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014). https://doi.org/10.1016/j.cma.2014.05.005

    Article  MathSciNet  MATH  Google Scholar 

  23. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for a nonlinear Brinkman model of porous media flow. Calcolo 55(2), 21 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghia, U., Ghia, K.N., Shin, C.: High-re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)

    Article  MATH  Google Scholar 

  25. Hauke, G., Doweidar, M.: Fourier analysis of semi-discrete and space–time stabilized methods for the advective–diffusive–reactive equation: I. SUPG. Comput. Methods Appl. Mech. Eng. 194(1), 45–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hauke, G., Doweidar, M.: Fourier analysis of semi-discrete and space–time stabilized methods for the advective–diffusive–reactive equation: II. SGS. Comput. Methods Appl. Mech. Eng. 194(6), 691–725 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hauke, G., Doweidar, M.: Fourier analysis of semi-discrete and space–time stabilized methods for the advective–diffusive–reactive equation: III. SGS/GSGS. Comput. Methods Appl. Mech. Eng. 195(44), 6158–6176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hauke, G., Hughes, T.: A unified approach to compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 113, 389–395 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hughes, T., Franca, L., Mallet, M.: A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized supg formulation for linear time-dependent multidimensional advective–diffusive systems. Comput. Methods Appl. Mech. Eng. 63, 97–112 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hughes, T.J., Franca, L.P.: A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Irisarri, D.: Virtual element method stabilization for convection–diffusion–reaction problems using the link-cutting condition. Calcolo 54(1), 141–154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Marchi, C.H., Suero, R., Araki, L.K.: The lid-driven square cavity flow: numerical solution with a \(1024 \times 1024\) grid. J. Braz. Soc. Mech. Sci. Eng. 31(3), 186–198 (2009)

    Article  Google Scholar 

  33. Shakib, F., Hughes, T.: A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space–time Galerkin/least-squares algorithms. Comput. Methods Appl. Mech. Eng. 87, 35–58 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.: Polymesher: a general-purpose mesh generator for polygonal elements written in matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tezduyar, T., Mittal, S., Ray, S., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput. Methods Appl. Mech. Eng. 95(2), 221–242 (1992)

    Article  MATH  Google Scholar 

  36. Vacca, G.: An H1-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28(01), 159–194 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wriggers, P., Rust, W., Reddy, B.: A virtual element method for contact. Comput. Mech. 58(6), 1039–1050 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by Gobierno de Aragón and FEDER funding from the European Union (Grupo Consolidado de Mecánica de Fluidos Coputacional T21) and by the Ministerio de Economía y Competitividad under contract MAT2016-76039-C4-4-R (AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Irisarri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irisarri, D., Hauke, G. Stabilized virtual element methods for the unsteady incompressible Navier–Stokes equations. Calcolo 56, 38 (2019). https://doi.org/10.1007/s10092-019-0332-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0332-5

Keywords

Mathematics Subject Classification

Navigation