Skip to main content
Log in

A FEM for an optimal control problem subject to the fractional Laplace equation

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We study the numerical approximation of linear–quadratic optimal control problems subject to the fractional Laplace equation with its spectral definition. We compute an approximation of the state equation using a discretization of the Balakrishnan formula that is based on a finite element discretization in space and a sinc quadrature approximation of the additionally involved integral. A tailored approach for the numerical solution of the resulting linear systems is proposed. Concerning the discretization of the optimal control problem we consider two schemes. The first one is the variational approach, where the control set is not discretized, and the second one is the fully discrete scheme where the control is discretized by piecewise constant functions. We derive finite element error estimates for both methods and illustrate our results by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abatangelo, N., Dupaigne, L.: Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Ann. l’Inst. Henri Poincare Non Linear Anal. 34(2), 439–467 (2017). https://doi.org/10.1016/j.anihpc.2016.02.001

    Article  MathSciNet  MATH  Google Scholar 

  2. Antil, H., Khatri, E.R., Warma, M.: External optimal control of nonlocal PDEs. Inverse Problems (2019, to appear). arXiv:1811.04515

  3. Antil, H., Otárola, E.: A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53(6), 3432–3456 (2015)

    Article  MathSciNet  Google Scholar 

  4. Antil, H., Pfefferer, J., Rogovs, S.: Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization. Commun. Math. Sci. 16(5), 1395–1426 (2018)

    Article  MathSciNet  Google Scholar 

  5. Antil, H., Warma, M.: Optimal control of fractional semilinear PDEs. ESAIM Control Optim. Calc. Var. (2019). https://doi.org/10.1051/cocv/2019003

    Article  MATH  Google Scholar 

  6. Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23(2), 201–229 (2002). https://doi.org/10.1023/A:1020576801966

    Article  MathSciNet  MATH  Google Scholar 

  7. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page (2017). http://www.mcs.anl.gov/petsc. Accessed 10 Sept 2019

  8. Banjai, L., Melenk, J.M., Nochetto, R.H., Otárola, E., Salgado, A.J., Schwab, C.: Tensor FEM for spectral fractional diffusion. Found. Comput. Math. (2018). https://doi.org/10.1007/s10208-018-9402-3

    Article  MATH  Google Scholar 

  9. Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT Numer. Math. 43, 231–244 (2003)

    Article  MathSciNet  Google Scholar 

  10. Bonito, A., Borthagaray, J.P., Nochetto, R.H., Otárola, E., Salgado, A.J.: Numerical methods for fractional diffusion. Comput. Vis. Sci. 19(5), 19–46 (2018). https://doi.org/10.1007/s00791-018-0289-y

    Article  MathSciNet  Google Scholar 

  11. Bonito, A., Lei, W., Pasciak, J.: On Sinc quadrature approximations of fractional powers of regularly accretive operators. J. Numer. Math. (2018, to appear). arXiv:1709.06619

  12. Bonito, A., Pasciak, J.: Numerical approximation of fractional powers of regularly accretive operators. IMA J. Numer. Anal. 37(3), 1245–1273 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Bourdaud, G., Meyer, Y.: Fonctions qui operent sur les espaces de Sobolev. J. Funct. Anal. 97(2), 351–360 (1991). https://doi.org/10.1016/0022-1236(91)90006-Q

    Article  MathSciNet  MATH  Google Scholar 

  14. Bourdaud, G., Sickel, W.: Composition operators on function spaces with fractional order of smoothness (harmonic analysis and nonlinear partial differential equations) (2014). https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/187881. Accessed 10 Sept 2019

  15. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)

    Article  MathSciNet  Google Scholar 

  16. Cafarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Diff. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  17. Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Part. Differ. Equ. 36(8), 1353–1384 (2011)

    Article  MathSciNet  Google Scholar 

  18. Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31(2), 193–219 (2005). https://doi.org/10.1007/s10589-005-2180-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Chan, T., Ng, M.: Galerkin projection methods for solving multiple linear systems. SIAM J. Sci. Comput. 21(3), 836–850 (1999)

    Article  MathSciNet  Google Scholar 

  20. Cusimano, N., del Teso, F., Gerardo-Giorda, L., Pagnini, G.: Discretizations of the spectral fractional laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal. 56(3), 1243–1272 (2018). https://doi.org/10.1137/17M1128010

    Article  MathSciNet  MATH  Google Scholar 

  21. D’Elia, M., Glusa, C., Otárola, E.: A priori error estimates for the optimal control of the integral fractional Laplacian. SIAM J. Control Optim. 57(4), 2775–2798 (2019). https://doi.org/10.1137/18M1219989

    Article  MathSciNet  MATH  Google Scholar 

  22. Falgout, R., Barker, A., Gahvari, H., Kolev, T., Li, R., Osei-Kuffuor, D., Schroder, J., Vassilevsk, P., Wang, L., Yang, U.M.: Hypre webpage (2017). https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods. Accessed 10 Sept 2019

  23. Frommer, A.: BiCGStabl(\(l\)) for families of shifted linear systems. Computing 70, 87–109 (2003)

    Article  MathSciNet  Google Scholar 

  24. Frommer, A., Maass, P.: Fast CG-based methods for Tikhonov–Phillips regularization. SIAM J. Sci. Comput. 20(5), 1831–1850 (1999)

    Article  MathSciNet  Google Scholar 

  25. Glusa, C., Otárola, E.: Optimal control of a parabolic fractional PDE: analysis and discretization. (2019) arXiv e-prints arXiv:1905.10002

  26. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  27. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Article  MathSciNet  Google Scholar 

  28. Logg, A., Mardal, K.A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-23099-8

    Book  MATH  Google Scholar 

  29. Meidner, D., Pfefferer, J., Schürholz, K., Vexler, B.: \(hp\)-finite elements for fractional diffusion. SIAM J. Numer. Anal. 56(4), 2345–2374 (2018). https://doi.org/10.1137/17M1135517

    Article  MathSciNet  MATH  Google Scholar 

  30. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43(3), 970–985 (2004)

    Article  MathSciNet  Google Scholar 

  31. Musina, R., Nazarov, A.I.: A note on truncations in fractional Sobolev spaces. Bull. Math. Sci. (2017). https://doi.org/10.1007/s13373-017-0107-8

    Article  Google Scholar 

  32. Nazarov, A.I.: Remark on fractional Laplacians. Preprints of the St. Petersburg Mathematical Society 2016-01 (2016). http://www.mathsoc.spb.ru/preprint/2016/index.html. Accessed 10 Sept 2019

  33. Nochetto, R., Otárola, E., Salgado, A.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 848–873 (2015)

    Article  MathSciNet  Google Scholar 

  34. Nochetto, R., Otárola, E., Salgado, A.: A PDE approach to space–time fractional parabolic problems. SIAM J. Numer. Anal. 54(2), 848–873 (2016)

    Article  MathSciNet  Google Scholar 

  35. Oswald, P.: On the boundedness of the mapping \(f \rightarrow |f|\) in Besov spaces. Comment. Math. Univ. Carolin. 33(1), 57–66 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Otárola, Enrique: A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains. ESAIM: M2AN 51(4), 1473–1500 (2017). https://doi.org/10.1051/m2an/2016065

    Article  MathSciNet  MATH  Google Scholar 

  37. Rösch, A.: Error estimates for linear–quadratic control problems with control constraints. Optim. Methods Softw. 21(1), 121–134 (2006). https://doi.org/10.1080/10556780500094945

    Article  MathSciNet  MATH  Google Scholar 

  38. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 3. de Gruyter, Berlin (2011)

    MATH  Google Scholar 

  39. Soodhalter, K.: Two recursive GMRES-type methods for shifted linear systems with general preconditioning. Electron. Trans. Numer. Anal. 45, 499–523 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Soodhalter, K., Szyld, D., Xue, F.: Krylov subspace recycling for sequences of shifted linear systems. Appl. Numer. Math. 81, 105–118 (2014)

    Article  MathSciNet  Google Scholar 

  41. Stinga, P., Torrea, J.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Part. Differ. Equ. 35(11), 2092–2122 (2010)

    Article  MathSciNet  Google Scholar 

  42. Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen. Vieweg, Wiesbaden (2005)

    Book  Google Scholar 

  43. Yosida, K.: Functional Analysis. Springer, Berlin (1980)

    MATH  Google Scholar 

  44. Zhong, H., Gu, X.: A flexible and adaptive Simpler GMRES with deflated restarting for shifted linear systems. Comput. Math. Appl. 78(3), 997–1007 (2019). https://doi.org/10.1016/j.camwa.2019.03.017

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Harbir Antil for giving a compact course on fractional PDEs as a preparation for this work. Furthermore, we would like to thank Johannes Pfefferer for many fruitful discussions during the preparation of this work. Further we thank Johannes Pfefferer and Constantin Christof for many helpful discussions during the revision of this work. Finally, we would like to thank the anonymous reviewers for their valuable suggestions to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kahle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the International Research Training Group 1754, funded by the German Research Foundation (DFG), and the Austrian Science Fund (FWF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dohr, S., Kahle, C., Rogovs, S. et al. A FEM for an optimal control problem subject to the fractional Laplace equation. Calcolo 56, 37 (2019). https://doi.org/10.1007/s10092-019-0334-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0334-3

Keywords

Mathematics Subject Classification

Navigation