Skip to main content
Log in

Canonical Kähler metrics on classes of Lorentzian 4-manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Conditions for the existence of Kähler–Einstein metrics and central Kähler metrics (Maschler in Trans Am Math Soc 355:2161–2182, 2003) along with examples, both old and new, are given on classes of Lorentzian 4-manifolds with two distinguished vector fields. The results utilize the general construction (Aazami and Maschler in Kähler metrics via Lorentzian geometry in dimension four, Complex Manifolds 7:36–61 (2020) of Kähler metrics on such manifolds. The examples include both complete and incomplete metrics, and some reside on Lie groups associated with four types of Lie algebras. An appendix includes a similar construction for scalar-flat Kähler metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aazami, A.B., Maschler, G.: Kähler metrics via Lorenztian Geometry in dimension four. Complex Manifolds 7, 36–61 (2020)

    Article  MathSciNet  Google Scholar 

  2. Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: Hamiltonian 2-forms in Kähler geometry. I. General theory. J. Differ. Geom. 73, 359–412 (2006)

    Article  Google Scholar 

  3. Bérard-Bergery, L.: Sur de nouvelles variétés riemanniennes d’Einstein, Institut Élie Cartan, 6, 1–60. Univ, Nancy (1982)

  4. Cheeger, J., Ebin, D. G: Comparison theorems in Riemannian geometry, vol. 9, North-Holland Publishing Company Amsterdam, (1975)

  5. Dancer, A.S., Strachan, I.A.B.: Kähler-Einstein metrics with \(SU(2)\) action. Math. Proc. Camb. Phil. Soc. 115, 513–525 (1994)

    Article  Google Scholar 

  6. Dancer, A. S., Strachan, I. A. B.: Cohomogeneity-one Kähler metrics, Twistor theory (Plymouth), pp. 9–27, Lecture Notes in Pure and Appl. Math., vol. 169, Dekker, New York, (1995)

  7. Dancer, A.S., Wang, M.Y.: Kähler-Einstein Metrics of Cohomogeneity One. Math. Ann. 312, 503–526 (1998)

    Article  MathSciNet  Google Scholar 

  8. Dancer, A.S., Wang, M.Y.: On Ricci solitons of cohomogeneity one. Ann. Global Anal. Geom. 39, 259–292 (2011)

    Article  MathSciNet  Google Scholar 

  9. Derdzinski, A.: Curvature-homogeneous indefinite Einstein metrics in dimension four: the diagonalizable case, Recent advances in Riemannian and Lorentzian geometries, pp. 21–38, Contemp. Math., vol. 337, Amer. Math. Soc., Providence, RI, (2003)

  10. Derdzinski, A., Maschler, G.: Local classification of conformally-Einstein Kähler metrics in higher dimensions. Proc. London Math. Soc. 87, 779–819 (2003)

    Article  MathSciNet  Google Scholar 

  11. Dirmeier, A., Plaue, M., Scherfner, M.: Growth conditions, Riemannian completeness and Lorentzian causality. J. Geom. Phys. 62, 604–612 (2012)

    Article  MathSciNet  Google Scholar 

  12. Dirmeier, A., Plaue, M., Scherfner, M.: Corrigendum to “Growth conditions, Riemannian completeness and Lorentzian causality”. J. Geom. Phys. 74, 392–396 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gibbons, G.W., Pope, C.N.: The positive action conjecture and asymptotically Euclidean metrics in quantum gravity. Commun. Math. Phys. 66, 267–290 (1979)

    Article  MathSciNet  Google Scholar 

  14. Isenberg, J., Jackson, M., Lu, P.: Ricci flow on locally homogeneous closed 4-manifolds Comm. Anal. Geom. 14, 345–386 (2006)

    Article  MathSciNet  Google Scholar 

  15. LeBrun, C.: Explicit self-dual metrics on \(\mathbb{CP}_2\#\ldots \#\mathbb{CP}_2\). J. Differential Geom. 34, 223–253 (1991)

    Article  MathSciNet  Google Scholar 

  16. MacCallum, M.A.H.: On the classification of the real four-dimensional Lie algebras, On Einstein’s path (New York, 1996), 299–317. Springer, New York (1999)

    Google Scholar 

  17. Maschler, G.: Central Kähler metrics. Trans. Amer. Math. Soc. 355, 2161–2182 (2003)

    Article  MathSciNet  Google Scholar 

  18. O’Neill, B.: Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, vol. 103. Academic Press, New York (1983)

    MATH  Google Scholar 

  19. Ovando, G.P.: Invariant pseudo-Kähler metrics in dimension four. J. Lie Theory 16, 371–391 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Page, D.: A compact rotating gravitational instanton. Phys. Lett. B 79, 235–238 (1978)

    Article  Google Scholar 

  21. Pedersen, H.: Eguchi-Hanson metrics with cosmological constant. Class. Quantum Gravity 2, 579–587 (1985)

    Article  MathSciNet  Google Scholar 

  22. \(\breve{{\rm S}}\)nobl L., Winternitz, P.: Classification and identification of Lie algebras, CRM Monograph Series, vol. 33. American Mathematical Society, Providence (2014)

  23. Verdiani, L., Ziller, W.: smoothness conditions in cohomogeneity one manifolds, arXiv:1804.04680

  24. Wang, M.Y.: Einstein metrics from symmetry and bundle constructions. Surv. Differ. Geom. 6, 287–325 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Andrzej Derdzinski and Robert Ream for fruitful exchanges regarding Lie groups and completeness; more details are given in the text. We also thank the referee for pointed remarks that led to an expansion of an earlier version to include the material on Lie group metrics, Theorem 2, completeness and the appendix, as well as improvements to other aspects of this work, in particular Sect. 1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Maschler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Scalar-flat Kähler surfaces arising from pp-waves

Appendix A. Scalar-flat Kähler surfaces arising from pp-waves

We address here the question of whether it is possible to generate scalar-flat Kähler surfaces with symmetry from an ansatz similar to the one used for admissible metrics and give examples where the background Lorentzian metric is a pp-wave.

Recall LeBrun’s general ansatz [15] for such Kähler metrics,

$$\begin{aligned} g_{\scriptscriptstyle K}=e^uw(dp^2+dq^2)+wdz^2+w^{-1}\theta ^2, \end{aligned}$$

where p, q, z form a coordinate system for a region in \(\mathbb {R}^3\), and the manifold M is the total space of a circle bundle over such region (provided the de Rham class of a certain curvature 2-form associated with the connection 1-form \(\theta \) is integral). Note that z is also a hamiltonian for a holomorphic Killing field, and the following PDEs hold for u, \(w>0\):

$$\begin{aligned} \begin{aligned}&u_{pp}+u_{qq}+(e^u)_{zz}=0\\&w_{pp}+w_{qq}+(we^u)_{zz}=0. \end{aligned} \end{aligned}$$
(46)

With this ansatz in mind, let \(\{p,q,z,t\}\) be local coordinates on a manifold M, and fix two smooth functions u(pqz), \(w(p,q,z)>0\). Consider the 2-form

$$\begin{aligned} \omega (a,b):=d(e^\tau {{\varvec{p}}}^\flat )(a,b) \end{aligned}$$
(47)

where \(\tau \) is a smooth function, \({{\varvec{p}}}\) is a vector field with 1-form \({{\varvec{p}}}^\flat \) dual to it with respect to some given semi-Riemannian metric. Let a, b take values in frame fields \({{\varvec{k}}}\), \({{\varvec{t}}}\), \({\varvec{x}}=\partial _p\), \({\varvec{y}}=\partial _q\) residing in the coordinate neighborhood. Mimicking LeBrun’s ansatz, we require \(d(e^\tau {{\varvec{p}}}^\flat )(a,b)\) to have the value \(e^uw\) when \(a={\varvec{x}}\), \(b={\varvec{y}}\), the value w when \(a={{\varvec{k}}}\), \(b={{\varvec{t}}}\), and the value zero for all other pairs a, b with \(a\in \{{{\varvec{k}}},{{\varvec{t}}}\}\), \(b\in \{{\varvec{x}},{\varvec{y}}\}\).

Furthermore, we define an almost complex structure by \(J{{\varvec{k}}}={{\varvec{t}}}\), \(J{\varvec{x}}={\varvec{y}}\). Note that the above values on the frame imply that \(\omega \) is J-invariant and symplectic. We further require

  • J is integrable;

  • \({{\varvec{k}}}\) preserves J;

  • \({{\varvec{k}}}\) is a hamiltonian vector field for \(\omega \), with hamiltonian z;

  • The following PDEs hold for u, w:

    $$\begin{aligned}&d^2_{\varvec{x}}u +d^2_{\varvec{y}}u+(e^u)_{zz}=0,\nonumber \\&d^2_{\varvec{x}}w +d^2_{\varvec{y}}w+(we^u)_{zz}=0. \end{aligned}$$
    (48)

If these conditions hold, it will follow from [15] that \(g_{\scriptscriptstyle K}=\omega (\cdot , J\cdot )\) is a scalar-flat Kähler metric defined in the coordinate domain.

We now demonstrate by verifying these conditions that examples of this construction hold, in which the semi-Riemannian background metric is a pp-wave, given by

$$\begin{aligned} g_L=H(x,y,u)du^2+2du\odot dv+dx^2+dy^2. \end{aligned}$$
(49)

We choose our frame as follows: \({\varvec{x}}=\partial _x+\partial _y+\partial _v\), \({\varvec{y}}=-\partial _x/2-\partial _y/2+\partial _u-H\partial _v/2\), \({{\varvec{k}}}=\partial _v\), \({{\varvec{t}}}=-3\partial _x-\partial _y-2\partial _v\). Next we take \({{\varvec{p}}}=\partial _x-\partial _u+(H+1)\partial _v/2\), so that

$$\begin{aligned} {{\varvec{p}}}^\flat =\mathrm{d}x+\frac{1-H}{2}\mathrm{d}u-\mathrm{d}v. \end{aligned}$$

Just as in Remark 2.2, integrability of J is checked by verifying \(N({{\varvec{k}}},{\varvec{x}})=0\), where N is the Nijenhuis tensor. This holds if and only if \(3H_x+H_y=0\). We choose either \(H(x,y,u)=e^{x-3y}\) or \(H(x,y,u)=x-3y\). In the latter case \(g_L\) is a flat pp-wave and the frame Lie brackets satisfy the Lie algebra relations of \(\mathfrak {nil}_3\times \mathbb {R}\). We check the remaining conditions only for the latter case, as the former case is similar.

One calculates that for \(\tau =\tau (x,y)\), to obtain the above values of \(\omega \) on our frame, and hence its J-invariance, \(\tau _x+\tau _y=0\) must be required (specifically to have, say, \(\omega ({{\varvec{k}}},{\varvec{x}})=0\)), and we specialize to the case \(\tau =\log \,(y-x)\).

The nonzero values of the of the 2-form on our frame fields are

$$\begin{aligned} \omega ({\varvec{x}},{\varvec{y}})=e^\tau ,\qquad \omega ({{\varvec{k}}},{{\varvec{t}}})=2, \end{aligned}$$

so that we take \(w=2\) and \(u=\tau -\log 2=\log [(y-x)/2]\) (for \(H=e^{x-3y}\) one has instead \(\omega ({\varvec{x}},{\varvec{y}})=e^\tau e^{x-3y})\). Also, \(\iota _{{\varvec{k}}}\omega =\iota _{\partial _v}\omega =dy-dx\) and thus the hamiltonian associated with \({{\varvec{k}}}\) is \(z=y-x\). Now \(e^u=(y-x)/2=z/2\), so \((e^u)_{zz}=0\), while \((d^2_{\varvec{x}}+d^2_{\varvec{y}})u=-1/(y-x)^2+1/(y-x)^2=0\). Thus, equations (48) clearly hold, and \(g_{\scriptscriptstyle K}\) is scalar-flat Kähler on the region in \(\mathbb {R}^4\) given by \(\{y>x\}\). In fact, for both choices of H(xyu), the metric \(g_{\scriptscriptstyle K}\) is also conformally Einstein: \(e^{-2\tau }g_{\scriptscriptstyle K}\) is an Einstein metric with scalar curvature \(-12\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aazami, A.B., Maschler, G. Canonical Kähler metrics on classes of Lorentzian 4-manifolds. Ann Glob Anal Geom 57, 175–204 (2020). https://doi.org/10.1007/s10455-019-09694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-019-09694-5

Keywords

Navigation