Synthesis 2021; 53(03): 547-556
DOI: 10.1055/s-0040-1707370
paper

The A3 Redox-Neutral C1-Alkynylation of Tetrahydroisoquinolines: A Comparative Study between Visible Light Photocatalysis and Transition-Metal Catalysis

,
,
We thank the Departamento Administrativo de Ciencia, Tecnología e Innovación (Colombian Institute for Science and Research, COLCIENCIAS) under project no. 007-2017, cod. 110274558597 for financial support.


Abstract

Considering the current challenges of the A3 redox-neutral C1-alkynylation of tetrahydroisoquinolines (THIQs), we studied this synthetic tool under visible light photocatalysis and transition-metal catalysis in order to describe alternative reaction conditions and discuss possible improvements to this process. We demonstrated that 1-alkynylated THIQs can be readily obtained by three different approaches: iridium-based photocatalysis and copper ([CuBr(PPh3)3]) and silver (AgNO3) catalysis under mild, selective and accessible reaction conditions. Among these approaches, the copper(I)-based methodology resulted in the most robust, optimal reaction conditions for the synthesis of a series of 18 1-alkynylated THIQs in moderate to excellent yields and with high selectivity for the endo-alkynylated products. Moreover, this reaction can be accelerated by microwave irradiation (120 °C, 15 min) affording a novel library of diverse THIQs with alkyne and N-substituent moieties, from unreactive and uncommon substrates, that could be further transformed into new compounds of interest.

Supporting Information



Publication History

Received: 02 June 2020

Accepted after revision: 03 August 2020

Article published online:
21 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Pingaew R, Worachartcheewan A, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Arch. Pharmacal Res. 2013; 36: 1066
    • 1b Liu H, William S, Herdtweck E, Botros S, Dömling A. Chem. Biol. Drug Des. 2012; 79: 470
    • 1c Uesawa Y, Mohri K, Kawase M, Ishihara M, Sakagami H. Anticancer Res. 2011; 31: 4231
    • 1d Fang X, Yin Y, Chen YT, Yao L, Wang B, Cameron MD, Lin L, Khan S, Ruiz C, Schröter T, Grant W, Weiser A, Pocas J, Pachori A, Schürer S, Lograsso P, Feng Y. J. Med. Chem. 2010; 53: 5727
    • 2a Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
    • 2b Akinboye E, Rosen M, Bakare O, Denmeade S. Bioorg. Med. Chem. 2017; 25: 6707
  • 3 Chander S, Ashok P, Singh A, Murugesan S. Chem. Cent. J. 2015; 9: 33
  • 4 Galán A, Moreno L, Párraga J, Serrano A, Sanz MJ, Cortes D, Cabedo N. Bioorg. Med. Chem. 2013; 21: 3221
  • 5 Orhana I, Ozçelik B, Karaoğlu T, Sener B. Z. Naturforsch., C 2007; 62: 19
  • 6 Li Z, Bohle D, Li C. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 8928
  • 7 Huang J, Li L, Xiao T, Mao Z.-W, Zhou L. Asian J. Org. Chem. 2016; 5: 1204
  • 8 Zhang C, De CK, Mal R, Seidel D. J. Am. Chem. Soc. 2008; 130: 416
  • 9 Zheng QH, Meng W, Jiang GJ, Yu ZX. Org. Lett. 2013; 15: 5928
    • 10a Jesin I, Nandi GC. Eur. J. Org. Chem. 2019; 2704
    • 10b Mo J.-N, Su J, Zhao J. Molecules 2019; 24: 1216
    • 10c Peshkov VA, Pereshivko OP, Eycken EV. Chem. Soc. Rev. 2012; 41: 3790
  • 11 Taylor AM, Schreiber SL. Org. Lett. 2006; 8: 143
  • 14 Zimmermann TJ, Roy S, Martinez NE, Ziegler S, Hedberg C, Waldmann H. ChemBioChem 2013; 14: 295
  • 15 Sanders B, Jackson B, Brent M, Taylor A, Dang W, Berger S, Schreiber S, Howitz K, Marmorstein R. Bioorg. Med. Chem. 2009; 17: 7031
  • 16 Byvatov E, Sasse B, Stark H, Schneider G. ChemBioChem 2005; 6: 997
  • 17 Seidel D. Acc. Chem. Res. 2015; 48: 317
  • 18 Beillard A, Métro T.-X, Bantreil X, Martinez J, Lamaty F. Eur. J. Org. Chem. 2017; 4642
  • 20 Dang GH, Le DT, Truong T, Phan NT. S. J. Mol. Catal. A: Chem. 2015; 400: 162
  • 22 Wei C, Li Z, Li C.-J. Org. Lett. 2003; 5: 4473
  • 23 Hu G, Chen W, Ma D, Zhang Y, Xu P, Gao Y, Zhao Y. J. Org. Chem. 2016; 81: 1704
  • 24 Shao G, He Y, Xu Y, Chen J, Yu H, Cao R. Eur. J. Org. Chem. 2015; 4615
  • 25 Fang G, Bi X. Chem. Soc. Rev. 2015; 44: 8124
  • 26 Liang L, Astruc D. Coord. Chem. Rev. 2011; 255: 2933
  • 27 Bai R, Zhang G, Yi H, Huang Z, Qi X, Liu C, Miller JT, Kropf AJ, Bunel EE, Lan Y, Lei A. J. Am. Chem. Soc. 2014; 136: 16760
  • 28 Zheng L, Hua R. Chem. Rec. 2017; 17: 1
  • 29 Copper(I) Chemistry of Phosphines, Functionalized Phosphines and Phosphorus Heterocycles. Balakrishna MS. Elsevier; Amsterdam: 2019
  • 30 Lal S, Díez-González S. J. Org. Chem. 2011; 76: 2367
  • 31 Gujadhur R, Venkataraman D, Kintigh JT. Tetrahedron Lett. 2001; 42: 4791
  • 32 Xu H, Wang J, Wang P, Niu X, Luo Y, Zhu L, Yao X. RSC Adv. 2018; 8: 32942
  • 33 Jennah O, Beniazza R, Lozach C, Jardel D, Molton F, Duboc C, Buffeteau T, Kadib AE, Lastécouères D, Lahcini M, Vincen J.-M. Adv. Synth. Catal. 2018; 360: 4615
  • 34 Goswami M, Das AM. Carbohydr. Polym. 2018; 195: 189
  • 35 Zhao H, He W, Wei L, Cai M. Catal. Sci. Technol. 2016; 6: 1488
  • 36 Gulati U, Rawat S, Rajesh UC, Rawat DS. New J. Chem. 2017; 41: 8341
  • 37 Lin W, Cao T, Fan W, Han Y, Kuang J, Luo H, Miao B, Tang X, Yu Q, Yuan W, Zhang J, Zhu C, Ma S. Angew. Chem. Int. Ed. 2014; 53: 277
  • 38 Ortiz Villamizar MC, Zubkov FI, Puerto Galvis CE, Vargas Méndez LY, Kouznetsov VV. Org. Chem. Front. 2017; 4: 1736
  • 39 Perepichka I, Kundu S, Hearne Z, Li C.-J. Org. Biomol. Chem. 2015; 13: 447
  • 40 Franz JF, Kraus WB, Zeitler K. Chem. Commun. 2015; 51: 8280
  • 41 Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633