Skip to main content

Advertisement

Log in

Cellular and systemic mechanisms for glucose sensing and homeostasis

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Glucose is a major source of energy in animals. Maintaining blood glucose levels within a physiological range is important for facilitating glucose uptake by cells, as required for optimal functioning. Glucose homeostasis relies on multiple glucose-sensing cells in the body that constantly monitor blood glucose levels and respond accordingly to adjust its glycemia. These include not only pancreatic β-cells and α-cells that secrete insulin and glucagon, but also central and peripheral neurons regulating pancreatic endocrine function. Different types of cells respond distinctively to changes in blood glucose levels, and the mechanisms involved in glucose sensing are diverse. Notably, recent studies have challenged the currently held views regarding glucose-sensing mechanisms. Furthermore, peripheral and central glucose-sensing cells appear to work in concert to control blood glucose level and maintain glucose and energy homeostasis in organisms. In this review, we summarize the established concepts and recent advances in the understanding of cellular and systemic mechanisms that regulate glucose sensing and its homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  2. Abraham MA, Lam TKT (2016) Glucagon action in the brain. Diabetologia 59:1367–1371. https://doi.org/10.1007/s00125-016-3950-3

    Article  CAS  PubMed  Google Scholar 

  3. Ahren B (2000) Autonomic regulation of islet hormone secretion--implications for health and disease. Diabetologia 43:393–410. https://doi.org/10.1007/s001250051322

    Article  CAS  PubMed  Google Scholar 

  4. Ahren B, Wierup N, Sundler F (2006) Neuropeptides and the regulation of islet function. Diabetes 55:S98–S107. https://doi.org/10.2337/db06-S013

    Article  CAS  Google Scholar 

  5. Aklan I, Sayar Atasoy N, Yavuz Y, Ates T, Coban I, Koksalar F, Filiz G, Topcu IC, Oncul M, Dilsiz P, Cebecioglu U, Alp MI, Yilmaz B, Davis DR, Hajdukiewicz K, Saito K, Konopka W, Cui H, Atasoy D (2020) NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways. Cell Metab 31:313–326 e315. https://doi.org/10.1016/j.cmet.2019.11.016

    Article  CAS  PubMed  Google Scholar 

  6. Aragon F, Karaca M, Novials A, Maldonado R, Maechler P, Rubi B (2015) Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells. Biochim Biophys Acta 1850:343–351. https://doi.org/10.1016/j.bbagen.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  7. Ashcroft FM, Gribble FM (1999) ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia 42:903–919. https://doi.org/10.1007/s001250051247

    Article  CAS  PubMed  Google Scholar 

  8. Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54:87–143. https://doi.org/10.1016/0079-6107(89)90013-8

    Article  CAS  PubMed  Google Scholar 

  9. Ashford ML, Boden PR, Treherne JM (1990) Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch 415:479–483. https://doi.org/10.1007/bf00373626

    Article  CAS  PubMed  Google Scholar 

  10. Balfour RH, Hansen AM, Trapp S (2006) Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem. J Physiol 570:469–484. https://doi.org/10.1113/jphysiol.2005.098822

    Article  CAS  PubMed  Google Scholar 

  11. Barg S, Galvanovskis J, Gopel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 49:1500–1510. https://doi.org/10.2337/diabetes.49.9.1500

    Article  CAS  PubMed  Google Scholar 

  12. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of K-ATP channels. Science 282:1141–1144. https://doi.org/10.1126/science.282.5391.1141

    Article  CAS  PubMed  Google Scholar 

  13. Berglund ED, Liu C, Sohn JW, Liu T, Kim MH, Lee CE, Vianna CR, Williams KW, Xu Y, Elmquist JK (2013) Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis. J Clin Invest 123:5061–5070. https://doi.org/10.1172/JCI70338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berglund ED, Liu T, Kong X, Sohn JW, Vong L, Deng Z, Lee CE, Lee S, Williams KW, Olson DP, Scherer PE, Lowell BB, Elmquist JK (2014) Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat Neurosci 17:911–913. https://doi.org/10.1038/nn.3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berglund ED, Vianna CR, Donato J Jr, Kim MH, Chuang JC, Lee CE, Lauzon DA, Lin P, Brule LJ, Scott MM, Coppari R, Elmquist JK (2012) Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J Clin Invest 122:1000–1009. https://doi.org/10.1172/JCI59816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berthoud HR, Fox EA, Powley TL (1990) Localization of vagal preganglionics that stimulate insulin and glucagon secretion. Am J Phys 258:R160–R168. https://doi.org/10.1152/ajpregu.1990.258.1.R160

    Article  CAS  Google Scholar 

  17. Bohland M, Matveyenko AV, Saberi M, Khan AM, Watts AG, Donovan CM (2014) Activation of hindbrain neurons is mediated by portal-mesenteric vein glucosensors during slow-onset hypoglycemia. Diabetes 63:2866–2875. https://doi.org/10.2337/db13-1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bokvist K, Olsen HL, Hoy M, Gotfredsen CF, Holmes WF, Buschard K, Rorsman P, Gromada J (1999) Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch 438:428–436. https://doi.org/10.1007/s004249900076

    Article  CAS  PubMed  Google Scholar 

  19. Borg WP, During MJ, Sherwin RS, Borg MA, Brines ML, Shulman GI (1994) Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J Clin Invest 93:1677–1682. https://doi.org/10.1172/JCI117150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boychuk CR, Gyarmati P, Xu H, Smith BN (2015) Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii. J Neurophysiol 114:999–1007. https://doi.org/10.1152/jn.00310.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boychuk CR, Smith KC, Peterson LE, Boychuk JA, Butler CR, Derera ID, McCarthy JJ, Smith BN (2019) A hindbrain inhibitory microcircuit mediates vagally-coordinated glucose regulation. Sci Rep 9:2722. https://doi.org/10.1038/s41598-019-39490-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burdakov D, Gerasimenko O, Verkhratsky A (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25:2429–2433. https://doi.org/10.1523/JNEUROSCI.4925-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burdakov D, Jensen LT, Alexopoulos H, Williams RH, Fearon IM, O'Kelly I, Gerasimenko O, Fugger L, Verkhratsky A (2006) Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50:711–722. https://doi.org/10.1016/j.neuron.2006.04.032

    Article  CAS  PubMed  Google Scholar 

  24. Cartier EA, Conti LR, Vandenberg CA, Shyng SL (2001) Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci U S A 98:2882–2887. https://doi.org/10.1073/pnas.051499698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choi YH, Fujikawa T, Lee J, Reuter A, Kim KW (2013) Revisiting the ventral medial nucleus of the hypothalamus: the roles of SF-1 neurons in energy homeostasis. Front Neurosci 7:71. https://doi.org/10.3389/fnins.2013.00071

    Article  PubMed  PubMed Central  Google Scholar 

  26. Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 117:2325–2336. https://doi.org/10.1172/JCI31516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cochrane V, Shyng SL (2019) Leptin-induced trafficking of KATP channels: a mechanism to regulate pancreatic beta-cell excitability and insulin secretion. Int J Mol Sci 20:20. https://doi.org/10.3390/ijms20112660

    Article  CAS  Google Scholar 

  28. Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311:271–273. https://doi.org/10.1038/311271a0

    Article  CAS  PubMed  Google Scholar 

  29. Cook DL, Satin LS, Ashford ML, Hales CN (1988) ATP-sensitive K+ channels in pancreatic beta-cells. Spare-channel hypothesis. Diabetes 37:495–498. https://doi.org/10.2337/diab.37.5.495

    Article  CAS  PubMed  Google Scholar 

  30. Csanady L, Vergani P, Gadsby DC (2019) Structure, gating, and regulation of the CFTR anion channel. Physiol Rev 99:707–738. https://doi.org/10.1152/physrev.00007.2018

    Article  CAS  PubMed  Google Scholar 

  31. Dunn-Meynell AA, Routh VH, Kang L, Gaspers L, Levin BE (2002) Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes 51:2056–2065. https://doi.org/10.2337/diabetes.51.7.2056

    Article  CAS  PubMed  Google Scholar 

  32. Dus M, Lai JS, Gunapala KM, Min S, Tayler TD, Hergarden AC, Geraud E, Joseph CM, Suh GS (2015) Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron 87:139–151. https://doi.org/10.1016/j.neuron.2015.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR, Kuhar MJ, Saper CB, Elmquist JK (1998) Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21:1375–1385. https://doi.org/10.1016/s0896-6273(00)80656-x

    Article  CAS  PubMed  Google Scholar 

  34. Eliasson L, Abdulkader F, Braun M, Galvanovskis J, Hoppa MB, Rorsman P (2008) Novel aspects of the molecular mechanisms controlling insulin secretion. J Physiol 586:3313–3324. https://doi.org/10.1113/jphysiol.2008.155317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fioramonti X, Chretien C, Leloup C, Penicaud L (2017) Recent advances in the cellular and molecular mechanisms of hypothalamic neuronal glucose detection. Front Physiol 8:875. https://doi.org/10.3389/fphys.2017.00875

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fioramonti X, Contie S, Song Z, Routh VH, Lorsignol A, Penicaud L (2007) Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes 56:1219–1227. https://doi.org/10.2337/db06-0567

    Article  CAS  PubMed  Google Scholar 

  37. Fioramonti X, Lorsignol A, Taupignon A, Penicaud L (2004) A new ATP-sensitive K+ channel-independent mechanism is involved in glucose-excited neurons of mouse arcuate nucleus. Diabetes 53:2767–2775. https://doi.org/10.2337/diabetes.53.11.2767

    Article  CAS  PubMed  Google Scholar 

  38. Frohman LA, Ezdinli EZ, Javid R (1967) Effect of vagotomy and vagal stimulation on insulin secretion. Diabetes 16:443–448. https://doi.org/10.2337/diab.16.7.443

    Article  CAS  PubMed  Google Scholar 

  39. Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22:565–604. https://doi.org/10.1210/edrv.22.5.0440

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez JA, Jensen LT, Fugger L, Burdakov D (2008) Metabolism-independent sugar sensing in central orexin neurons. Diabetes 57:2569–2576. https://doi.org/10.2337/db08-0548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez JA, Reimann F, Burdakov D (2009) Dissociation between sensing and metabolism of glucose in sugar sensing neurones. J Physiol 587:41–48. https://doi.org/10.1113/jphysiol.2008.163410

    Article  CAS  PubMed  Google Scholar 

  42. Gopel S, Zhang Q, Eliasson L, Ma XS, Galvanovskis J, Kanno T, Salehi A, Rorsman P (2004) Capacitance measurements of exocytosis in mouse pancreatic alpha-, beta- and delta-cells within intact islets of Langerhans. J Physiol 556:711–726. https://doi.org/10.1113/jphysiol.2003.059675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gopel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P (2000) Regulation of glucagon release in mouse -cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J Physiol 528:509–520. https://doi.org/10.1111/j.1469-7793.2000.00509.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gribble FM, Tucker SJ, Haug T, Ashcroft FM (1998) MgATP activates the beta cell K-ATP channel by interaction with its SUR1 subunit. P Natl Acad Sci USA 95:7185–7190. https://doi.org/10.1073/pnas.95.12.7185

    Article  CAS  Google Scholar 

  45. Gromada J, Ma X, Hoy M, Bokvist K, Salehi A, Berggren PO, Rorsman P (2004) ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1-/- mouse alpha-cells. Diabetes 53(Suppl 3):S181–S189. https://doi.org/10.2337/diabetes.53.suppl_3.s181

    Article  CAS  PubMed  Google Scholar 

  46. Han YE, Chun JN, Kwon MJ, Ji YS, Jeong MH, Kim HH, Park SH, Rah JC, Kang JS, Lee SH, Ho WK (2018) Endocytosis of KATP channels drives glucose-stimulated excitation of pancreatic beta cells. Cell Rep 22:471–481. https://doi.org/10.1016/j.celrep.2017.12.049

    Article  CAS  PubMed  Google Scholar 

  47. Han YE, Lim A, Park SH, Chang S, Lee SH, Ho WK (2015) Rac-mediated actin remodeling and myosin II are involved in KATP channel trafficking in pancreatic beta-cells. Exp Mol Med 47:e190. https://doi.org/10.1038/emm.2015.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoy M, Olsen HL, Bokvist K, Buschard K, Barg S, Rorsman P, Gromada J (2000) Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells. J Physiol 527(Pt 1):109–120. https://doi.org/10.1111/j.1469-7793.2000.00109.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu K, Huang CS, Jan YN, Jan LY (2003) ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C. Neuron 38:417–432. https://doi.org/10.1016/s0896-6273(03)00256-3

    Article  CAS  PubMed  Google Scholar 

  50. Ibrahim N, Bosch MA, Smart JL, Qiu J, Rubinstein M, Ronnekleiv OK, Low MJ, Kelly MJ (2003) Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology 144:1331–1340. https://doi.org/10.1210/en.2002-221033

    Article  CAS  PubMed  Google Scholar 

  51. Jordan SD, Konner AC, Bruning JC (2010) Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci 67:3255–3273. https://doi.org/10.1007/s00018-010-0414-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kakei M, Kelly RP, Ashcroft SJ, Ashcroft FM (1986) The ATP-sensitivity of K+ channels in rat pancreatic B-cells is modulated by ADP. FEBS Lett 208:63–66. https://doi.org/10.1016/0014-5793(86)81533-2

    Article  CAS  PubMed  Google Scholar 

  53. Khodai T, Nunn N, Worth AA, Feetham CH, Belle MDC, Piggins HD, Luckman SM (2018) PACAP neurons in the ventromedial hypothalamic nucleus are glucose inhibited and their selective activation induces hyperglycaemia. Front Endocrinol (Lausanne) 9:632. https://doi.org/10.3389/fendo.2018.00632

    Article  Google Scholar 

  54. Kim SK, Rulifson EJ (2004) Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431:316–320. https://doi.org/10.1038/nature02897

    Article  CAS  PubMed  Google Scholar 

  55. Kirchgessner AL, Gershon MD (1990) Innervation of the pancreas by neurons in the gut. J Neurosci 10:1626–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kirchgessner AL, Gershon MD (1995) Presynaptic inhibition by serotonin of nerve-mediated secretion of pancreatic amylase. Am J Phys 268:G339–G345. https://doi.org/10.1152/ajpgi.1995.268.2.G339

    Article  CAS  Google Scholar 

  57. Kirchgessner AL, Liu MT (2001) Pituitary adenylate cyclase activating peptide (PACAP) in the enteropancreatic innervation. Anat Rec 262:91–100. https://doi.org/10.1002/1097-0185(20010101)262:1<91::AID-AR1014>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  58. Kong D, Vong L, Parton LE, Ye C, Tong Q, Hu X, Choi B, Bruning JC, Lowell BB (2010) Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab 12:545–552. https://doi.org/10.1016/j.cmet.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  59. Lajtha A, Johnson DA (2007) Handbook of neurochemistry and molecular neurobiology. Sensory neurochemistry. Springer reference, 3rd edn. Springer, New York, NY

  60. Lamy CM, Sanno H, Labouebe G, Picard A, Magnan C, Chatton JY, Thorens B (2014) Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metab 19:527–538. https://doi.org/10.1016/j.cmet.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  61. Larsson O, Deeney JT, Branstrom R, Berggren PO, Corkey BE (1996) Activation of the ATP-sensitive K+ channel by long chain acyl-CoA - a role in modulation of pancreatic beta-cell glucose sensitivity. J Biol Chem 271:10623–10626. https://doi.org/10.1074/jbc.271.18.10623

    Article  CAS  PubMed  Google Scholar 

  62. Lausier J, Diaz WC, Roskens V, LaRock K, Herzer K, Fong CG, Latour MG, Peshavaria M, Jetton TL (2010) Vagal control of pancreatic β-cell proliferation. Am J Physiol Endocrinol Metab 299:E786–E793. https://doi.org/10.1152/ajpendo.00202.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Levin BE (2007) Neuronal glucose sensing: still a physiological orphan? Cell Metab 6:252–254. https://doi.org/10.1016/j.cmet.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  64. Li W, Yu G, Liu Y, Sha L (2019) Intrapancreatic ganglia and neural regulation of pancreatic endocrine secretion. Front Neurosci 13:21. https://doi.org/10.3389/fnins.2019.00021

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lim A, Park SH, Sohn JW, Jeon JH, Park JH, Song DK, Lee SH, Ho WK (2009) Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in pancreatic beta-cells. Diabetes 58:2813–2819. https://doi.org/10.2337/db09-0600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin CW, Lin YW, Yan FF, Casey J, Kochhar M, Pratt EB, Shyng SL (2006) Kir6.2 mutations associated with neonatal diabetes reduce expression of ATP-sensitive K+ channels: implications in disease mechanism and sulfonylurea therapy. Diabetes 55:1738–1746. https://doi.org/10.2337/db05-1571

    Article  CAS  PubMed  Google Scholar 

  67. Maekawa F, Toyoda Y, Torii N, Miwa I, Thompson RC, Foster DL, Tsukahara S, Tsukamura H, Maeda K (2000) Localization of glucokinase-like immunoreactivity in the rat lower brain stem: for possible location of brain glucose-sensing mechanisms. Endocrinology 141:375–384. https://doi.org/10.1210/endo.141.1.7234

    Article  CAS  PubMed  Google Scholar 

  68. Mankouri J, Taneja TK, Smith AJ, Ponnambalam S, Sivaprasadarao A (2006) Kir6.2 mutations causing neonatal diabetes prevent endocytosis of ATP-sensitive potassium channels. EMBO J 25:4142–4151. https://doi.org/10.1038/sj.emboj.7601275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Manning Fox JE, Gyulkhandanyan AV, Satin LS, Wheeler MB (2006) Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 147:4655–4663. https://doi.org/10.1210/en.2006-0424

    Article  CAS  PubMed  Google Scholar 

  70. Marston OJ, Hurst P, Evans ML, Burdakov DI, Heisler LK (2011) Neuropeptide Y cells represent a distinct glucose-sensing population in the lateral hypothalamus. Endocrinology 152:4046–4052. https://doi.org/10.1210/en.2011-1307

    Article  CAS  PubMed  Google Scholar 

  71. Martin GM, Chen PC, Devaraneni P, Shyng SL (2013) Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Front Physiol 4:386. https://doi.org/10.3389/fphys.2013.00386

    Article  PubMed  PubMed Central  Google Scholar 

  72. Matschinsky FM (2002) Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes 51(Suppl 3):S394–S404. https://doi.org/10.2337/diabetes.51.2007.s394

    Article  CAS  PubMed  Google Scholar 

  73. Matschinsky FM, Glaser B, Magnuson MA (1998) Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes 47:307–315. https://doi.org/10.2337/diabetes.47.3.307

    Article  CAS  PubMed  Google Scholar 

  74. Matschinsky FM, Pagliara AS, Stillings SN, Hover BA (1976) Glucose and ATP levels in pancreatic islet tissue of normal and diabetic rats. J Clin Invest 58:1193–1200. https://doi.org/10.1172/JCI108572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mayer J (1953) Glucostatic mechanism of regulation of food intake. N Engl J Med 249:13–16. https://doi.org/10.1056/NEJM195307022490104

    Article  CAS  PubMed  Google Scholar 

  76. McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL (2011) GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Mol Genet Metab 104:648–653. https://doi.org/10.1016/j.ymgme.2011.08.026

    Article  CAS  PubMed  Google Scholar 

  77. Melnick IV, Price CJ, Colmers WF (2011) Glucosensing in parvocellular neurons of the rat hypothalamic paraventricular nucleus. Eur J Neurosci 34:272–282. https://doi.org/10.1111/j.1460-9568.2011.07742.x

    Article  PubMed  Google Scholar 

  78. Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, Seino S (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507–512. https://doi.org/10.1038/87455

    Article  CAS  PubMed  Google Scholar 

  79. Moriyama R, Tsukamura H, Kinoshita M, Okazaki H, Kato Y, Maeda K (2004) In vitro increase in intracellular calcium concentrations induced by low or high extracellular glucose levels in ependymocytes and serotonergic neurons of the rat lower brainstem. Endocrinology 145:2507–2515. https://doi.org/10.1210/en.2003-1191

    Article  CAS  PubMed  Google Scholar 

  80. Mountjoy PD, Bailey SJ, Rutter GA (2007) Inhibition by glucose or leptin of hypothalamic neurons expressing neuropeptide Y requires changes in AMP-activated protein kinase activity. Diabetologia 50:168–177. https://doi.org/10.1007/s00125-006-0473-3

    Article  CAS  PubMed  Google Scholar 

  81. Muroya S, Yada T, Shioda S, Takigawa M (1999) Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neurosci Lett 264:113–116. https://doi.org/10.1016/s0304-3940(99)00185-8

    Article  CAS  PubMed  Google Scholar 

  82. Murphy BA, Fakira KA, Song Z, Beuve A, Routh VH (2009) AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons. Am J Physiol Cell Physiol 297:C750–C758. https://doi.org/10.1152/ajpcell.00127.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Murphy BA, Fioramonti X, Jochnowitz N, Fakira K, Gagen K, Contie S, Lorsignol A, Penicaud L, Martin WJ, Routh VH (2009) Fasting enhances the response of arcuate neuropeptide Y-glucose-inhibited neurons to decreased extracellular glucose. Am J Physiol Cell Physiol 296:C746–C756. https://doi.org/10.1152/ajpcell.00641.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ngarmukos C, Baur EL, Kumagai AK (2001) Co-localization of GLUT1 and GLUT4 in the blood-brain barrier of the rat ventromedial hypothalamus. Brain Res 900:1–8. https://doi.org/10.1016/s0006-8993(01)02184-9

    Article  CAS  PubMed  Google Scholar 

  85. Nichols CG, Shyng SL, Nestorowicz A, Glaser B, Clement JP, Gonzalez G, AguilarBryan L, Permutt MA, Bryan J (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272:1785–1787. https://doi.org/10.1126/science.272.5269.1785

    Article  CAS  PubMed  Google Scholar 

  86. Oh Y, Lai JS, Mills HJ, Erdjument-Bromage H, Giammarinaro B, Saadipour K, Wang JG, Abu F, Neubert TA, Suh GSB (2019) A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila. Nature 574:559–564. https://doi.org/10.1038/s41586-019-1675-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Oomura Y, Kimura K, Ooyama H, Maeno T, Iki M, Kuniyoshi M (1964) Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats. Science 143:484–485. https://doi.org/10.1126/science.143.3605.484

    Article  CAS  PubMed  Google Scholar 

  88. Oomura Y, Ono T, Ooyama H, Wayner MJ (1969) Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222:282–284. https://doi.org/10.1038/222282a0

    Article  CAS  PubMed  Google Scholar 

  89. Papas KK, Long RC Jr, Constantinidis I, Sambanis A (1997) Role of ATP and Pi in the mechanism of insulin secretion in the mouse insulinoma betaTC3 cell line. Biochem J 326(Pt 3):807–814. https://doi.org/10.1042/bj3260807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Paranjape SA, Briski KP (2005) Recurrent insulin-induced hypoglycemia causes site-specific patterns of habituation or amplification of CNS neuronal genomic activation. Neuroscience 130:957–970. https://doi.org/10.1016/j.neuroscience.2004.09.030

    Article  CAS  PubMed  Google Scholar 

  91. Park SH, Ho WK, Jeon JH (2013) AMPK regulates K(ATP) channel trafficking via PTEN inhibition in leptin-treated pancreatic beta-cells. Biochem Biophys Res Commun 440:539–544. https://doi.org/10.1016/j.bbrc.2013.09.099

    Article  CAS  PubMed  Google Scholar 

  92. Park SH, Ryu SY, Yu WJ, Han YE, Ji YS, Oh K, Sohn JW, Lim A, Jeon JP, Lee H, Lee KH, Lee SH, Berggren PO, Jeon JH, Ho WK (2013) Leptin promotes K(ATP) channel trafficking by AMPK signaling in pancreatic beta-cells. Proc Natl Acad Sci U S A 110:12673–12678. https://doi.org/10.1073/pnas.1216351110

    Article  PubMed  PubMed Central  Google Scholar 

  93. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR, Balthasar N, Lee CE, Elmquist JK, Cowley MA, Lowell BB (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449:228–232. https://doi.org/10.1038/nature06098

    Article  CAS  PubMed  Google Scholar 

  94. Partridge CJ, Beech DJ, Sivaprasadarao A (2001) Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism. J Biol Chem 276:35947–35952. https://doi.org/10.1074/jbc.M104762200

    Article  CAS  PubMed  Google Scholar 

  95. Rabiee A, Galiatsatos P, Salas-Carrillo R, Thompson MJ, Andersen DK, Elahi D (2011) Pancreatic polypeptide administration enhances insulin sensitivity and reduces the insulin requirement of patients on insulin pump therapy. J Diabetes Sci Technol 5:1521–1528. https://doi.org/10.1177/193229681100500629

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ritter S, Dinh TT, Zhang Y (2000) Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose. Brain Res 856:37–47. https://doi.org/10.1016/s0006-8993(99)02327-6

    Article  CAS  PubMed  Google Scholar 

  97. Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, Berggren PO, Caicedo A (2011) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab 14:45–54. https://doi.org/10.1016/j.cmet.2011.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Roman CW, Derkach VA, Palmiter RD (2016) Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat Commun 7:11905. https://doi.org/10.1038/ncomms11905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rorsman P, Ashcroft FM (2018) Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98:117–214. https://doi.org/10.1152/physrev.00008.2017

    Article  CAS  PubMed  Google Scholar 

  100. Rorsman P, Braun M, Zhang Q (2012) Regulation of calcium in pancreatic alpha- and beta-cells in health and disease. Cell Calcium 51:300–308. https://doi.org/10.1016/j.ceca.2011.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic beta cells. Diabetologia 46:1029–1045. https://doi.org/10.1007/s00125-003-1153-1

    Article  CAS  PubMed  Google Scholar 

  102. Rorsman P, Salehi SA, Abdulkader F, Braun M, MacDonald PE (2008) K(ATP)-channels and glucose-regulated glucagon secretion. Trends Endocrinol Metab 19:277–284. https://doi.org/10.1016/j.tem.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  103. Rorsman P, Trube G (1985) Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflugers Arch 405:305–309. https://doi.org/10.1007/bf00595682

    Article  CAS  PubMed  Google Scholar 

  104. Ruiz de Azua I, Gautam D, Guettier JM, Wess J (2011) Novel insights into the function of beta-cell M3 muscarinic acetylcholine receptors: therapeutic implications. Trends Endocrinol Metab 22:74–80. https://doi.org/10.1016/j.tem.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  105. Sanders NM, Ritter S (2000) Repeated 2-deoxy-D-glucose-induced glucoprivation attenuates Fos expression and glucoregulatory responses during subsequent glucoprivation. Diabetes 49:1865–1874. https://doi.org/10.2337/diabetes.49.11.1865

    Article  CAS  PubMed  Google Scholar 

  106. Sayegh AI, Covasa M, Ritter RC (2004) Intestinal infusions of oleate and glucose activate distinct enteric neurons in the rat. Auton Neurosci 115:54–63. https://doi.org/10.1016/j.autneu.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  107. Schwartz TW (1983) Pancreatic polypeptide: a unique model for vagal control of endocrine systems. J Auton Nerv Syst 9:99–111. https://doi.org/10.1016/0165-1838(83)90134-0

    Article  CAS  PubMed  Google Scholar 

  108. Shimazu T, Minokoshi Y (2017) Systemic glucoregulation by glucose-sensing neurons in the ventromedial hypothalamic nucleus (VMH). J Endocr Soc 1:449–459. https://doi.org/10.1210/js.2016-1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Smith PA, Ashcroft FM, Rorsman P (1990) Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K(+)-currents in isolated mouse pancreatic beta-cells. FEBS Lett 261:187–190. https://doi.org/10.1016/0014-5793(90)80667-8

    Article  CAS  PubMed  Google Scholar 

  110. Sohn JW, Elmquist JK, Williams KW (2013) Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 36:504–512. https://doi.org/10.1016/j.tins.2013.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sohn JW, Harris LE, Berglund ED, Liu T, Vong L, Lowell BB, Balthasar N, Williams KW, Elmquist JK (2013) Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 152:612–619. https://doi.org/10.1016/j.cell.2012.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sohn JW, Oh Y, Kim KW, Lee S, Williams KW, Elmquist JK (2016) Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons. Mol Metab 5:669–679. https://doi.org/10.1016/j.molmet.2016.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sohn JW, Williams KW (2012) Functional heterogeneity of arcuate nucleus pro-opiomelanocortin neurons: implications for diverging melanocortin pathways. Mol Neurobiol 45:225–233. https://doi.org/10.1007/s12035-012-8240-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sohn JW, Xu Y, Jones JE, Wickman K, Williams KW, Elmquist JK (2011) Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 71:488–497. https://doi.org/10.1016/j.neuron.2011.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Song Z, Levin BE, McArdle JJ, Bakhos N, Routh VH (2001) Convergence of pre- and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 50:2673–2681

    Article  CAS  PubMed  Google Scholar 

  116. Song Z, Routh VH (2005) Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 54:15–22. https://doi.org/10.2337/diabetes.54.1.15

    Article  CAS  PubMed  Google Scholar 

  117. Spencer NJ, Hu H (2020) Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 17:338–351. https://doi.org/10.1038/s41575-020-0271-2

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tanaka T, Nagashima K, Inagaki N, Kioka H, Takashima S, Fukuoka H, Noji H, Kakizuka A, Imamura H (2014) Glucose-stimulated single pancreatic islets sustain increased cytosolic ATP levels during initial Ca2+ influx and subsequent Ca2+ oscillations. J Biol Chem 289:2205–2216. https://doi.org/10.1074/jbc.M113.499111

    Article  CAS  PubMed  Google Scholar 

  119. Tarasov AI, Girard CA, Ashcroft FM (2006) ATP sensitivity of the ATP-sensitive K+ channel in intact and permeabilized pancreatic beta-cells. Diabetes 55:2446–2454. https://doi.org/10.2337/db06-0360

    Article  CAS  PubMed  Google Scholar 

  120. Thorens B (2015) GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58:221–232. https://doi.org/10.1007/s00125-014-3451-1

    Article  CAS  PubMed  Google Scholar 

  121. Toda C, Kim JD, Impellizzeri D, Cuzzocrea S, Liu ZW, Diano S (2016) UCP2 regulates mitochondrial fission and ventromedial nucleus control of glucose responsiveness. Cell 164:872–883. https://doi.org/10.1016/j.cell.2016.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tong Q, Ye C, McCrimmon RJ, Dhillon H, Choi B, Kramer MD, Yu J, Yang Z, Christiansen LM, Lee CE, Choi CS, Zigman JM, Shulman GI, Sherwin RS, Elmquist JK, Lowell BB (2007) Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab 5:383–393. https://doi.org/10.1016/j.cmet.2007.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387:179–183. https://doi.org/10.1038/387179a0

    Article  CAS  PubMed  Google Scholar 

  124. Wan S, Browning KN (2008) D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers. Am J Physiol Gastrointest Liver Physiol 294:G757–G763. https://doi.org/10.1152/ajpgi.00576.2007

    Article  CAS  PubMed  Google Scholar 

  125. Wan S, Browning KN (2008) Glucose increases synaptic transmission from vagal afferent central nerve terminals via modulation of 5-HT3 receptors. Am J Physiol Gastrointest Liver Physiol 295:G1050–G1057. https://doi.org/10.1152/ajpgi.90288.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH (2004) The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 53:1959–1965. https://doi.org/10.2337/diabetes.53.8.1959

    Article  CAS  PubMed  Google Scholar 

  127. Wiser O, Trus M, Hernandez A, Renstrom E, Barg S, Rorsman P, Atlas D (1999) The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci U S A 96:248–253. https://doi.org/10.1073/pnas.96.1.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu Y, Shyng SL, Chen PC (2015) Concerted trafficking regulation of Kv2.1 and KATP channels by leptin in pancreatic beta-cells. J Biol Chem 290:29676–29690. https://doi.org/10.1074/jbc.M115.670877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang Q, Ramracheya R, Lahmann C, Tarasov A, Bengtsson M, Braha O, Braun M, Brereton M, Collins S, Galvanovskis J, Gonzalez A, Groschner LN, Rorsman NJ, Salehi A, Travers ME, Walker JN, Gloyn AL, Gribble F, Johnson PR, Reimann F, Ashcroft FM, Rorsman P (2013) Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metab 18:871–882. https://doi.org/10.1016/j.cmet.2013.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Greg S. B. Suh (KAIST) for helpful comments and suggestions. This work was supported by the National Research Foundation of Korea (NRF Grants 2019R1A2C2005161 to J.-W. S; 2010-0027941 and 2017R1A2B2010186 to W.-K. H) funded by the Korean Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Woo Sohn or Won-Kyung Ho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, JW., Ho, WK. Cellular and systemic mechanisms for glucose sensing and homeostasis. Pflugers Arch - Eur J Physiol 472, 1547–1561 (2020). https://doi.org/10.1007/s00424-020-02466-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02466-2

Keywords

Navigation