Skip to main content
Log in

Synthesis of Graphene Oxide–Supported β-Cyclodextrin Adsorbent for Removal of p-Nitrophenol

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Graphene oxide–supported β-cyclodextrin was prepared with graphene oxide and β-cyclodextrin as raw materials and epichlorohydrin as crosslinking agent, respectively. It was characterized by the methods of Raman spectroscopy, FT-IR, and SEM. The graphene oxide–supported β-cyclodextrin showed excellent adsorption performance for p-nitrophenol, and the absorption equilibrium can be achieved within 2 h. The adsorptive capacity is 117.28 mg/g at adsorption temperature of 313 K and pH at 8.0. Adsorption isotherms showed that the adsorption capacity increases with the increases of temperature and adsorption process could be better fitted by Langmuir isotherm (R2 > 0.995). Thermodynamic functions (ΔG, ΔH, and ΔS) investigation showed that the adsorption is spontaneous, endothermic, and random. The adsorption kinetics of p-nitrophenol over graphene oxide–supported β-cyclodextrin is conformed to a pseudo-second-order process. This study has suggested that the graphene oxide–supported β-cyclodextrin could play an efficient and beneficial source of the adsorbent for the purpose of eliminating p-nitrophenol from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed, M. J., & Theydan, S. K. (2015). Adsorptive removal of p-nitrophenol on microporous activated carbon by FeCl3 activation: equilibrium and kinetics studies. Desalin Water Treat, 55, 522–531.

    Article  CAS  Google Scholar 

  • Badruddoza, A. Z. M., Hazel, G. S. S., Hidajat, K., & Uddin, M. S. (2010). Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue. Colloid Surf A, 367, 85–95.

    Article  CAS  Google Scholar 

  • Barker, G., Calzada, J., Ouyang, Z., Domagalski, N., Herzer, S., & Rieble, S. J. (2016). A systematic approach to improve data quality in high-throughput batch adsorption experiments. Eng Life Sci, 16, 124–132.

    Article  CAS  Google Scholar 

  • Cao, Y., Fatemi, V., Demir, A., Fang, S., Tomarken, S. L., Luo, J. Y., Sanchez-Yamagishi, J. D., Watanabe, K., Taniguchi, T., Kaxiras, E., Ashoori, R. C., & Jarillo-Herrero, P. (2018a). Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80–84.

    Article  CAS  Google Scholar 

  • Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., & Jarillo-Herrero, P. (2018b). Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43–50.

    Article  CAS  Google Scholar 

  • Crini, G. J. (2003). Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresour Technol, 90, 193–198.

    Article  CAS  Google Scholar 

  • Cui, T., Mukherjee, S., Cao, C., Sudeep, P. M., Tam, J., Ajayan, P. M., Singh, C. V., Sun, Y., & Filleter, T. J. (2018). Effect of lattice stacking orientation and local thickness variation on the mechanical behavior of few layer graphene oxide. Carbon, 136, 168–175.

    Article  CAS  Google Scholar 

  • Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., & Ruoff, R. S. J. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457–460.

  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. J. (2010). The chemistry of graphene oxide. Chem Soc Rev, 39, 228–240.

    Article  CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. J. (1956). Colorimetric method for determination of sugars and related substances. Anal Chem, 28, 350–356.

    Article  CAS  Google Scholar 

  • Dutta, S., Bohre, A., Zheng, W., Jenness, G. R., Nunez, M., Saha, B., & Vlachos, D. G. J. (2017). Solventless C-C coupling of low carbon furanics to high carbon fuel precursors using an improved graphene oxide carbocatalyst. ACS Catal, 7, 3905–3915.

    Article  CAS  Google Scholar 

  • Ferrari, A. J. (2007). Raman spectroscopy of graphene and graphite: disorder, electron phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47–57.

    Article  CAS  Google Scholar 

  • Ferrari, A., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., & Roth, S. J. (2006). Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401.

    Article  CAS  Google Scholar 

  • Gurarslan, A., Joijode, A. S., & Tonelli, A. E. J. (2012). Polymers coalesced from their cyclodextrin inclusion complexes: what can they tell us about the morphology of melt-crystallized polymers? J Polym Sci Polym Phys, 50, 813–823.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & Mckay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ, 76, 332–340.

    Article  CAS  Google Scholar 

  • Houmller, J., Wanko, M., Rubio, A., & Nielsen, S. B. (2015). Effect of a single water molecule on the electronic absorption by O- and P-pitrophenolate: a shift to the red or to the blue? J Phys Chem A, 119, 11498–11503.

    Article  Google Scholar 

  • Hu, X., Yu, Y., Wang, Y., Zhou, J., & Song, L. J. (2015). Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution. Appl Surf Sci, 329, 83–86.

    Article  CAS  Google Scholar 

  • Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. J Am Chem Soc, 80, 1339.

  • Jiang, L. H., Liu, Y. G., Liu, S. B., Hu, X. J., Zeng, G. M., Hu, X., Liu, S. M., Liu, S. H., Huang, B. Y., & Li, M. F. (2017). Fabrication of b-cyclodextrin/poly (L-glutamic acid) supported magnetic graphene oxide and its adsorption behavior for 17b-estradiol. Chem Eng J, 308, 597–605.

    Article  CAS  Google Scholar 

  • Kudin, K. N., Ozbas, B., Schniepp, H. C., Prudhomme, R. K., Aksay, I. A., & Car, R. J. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 8, 36–41.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. J Am Chem Soc, 183, 102–105.

    Google Scholar 

  • Li, J. M., Meng, X. G., Hu, C. W., & Du, J. (2009). Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresour Technol, 100, 1168–1173.

    Article  CAS  Google Scholar 

  • Li, K., Li, Y., & Zheng, Z. (2010). Kinetics and mechanism studies of p-nitroaniline adsorption on activated carbon fibers prepared from cotton stalk by NH4H2PO4 activation and subsequent gasification with steam. J Hazard Mater, 178, 553–559.

    Article  CAS  Google Scholar 

  • Li, H., Tao, L., Huang, F., Sun, Q., Zhao, X., Han, J., Shen, Y., & Wang, M. J. (2017). Enhancing efficiency of perovskite solar cells via surface passivation with graphene oxide interlayer. ACS Appl Mater Interfaces, 9, 38967–38976.

    Article  CAS  Google Scholar 

  • Liu, Z., Robinson, J. T., Sun, X., & Dai, H. J. (2008). PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 130, 10876–10877.

    Article  CAS  Google Scholar 

  • Liu, Z., Xu, Y., Zhang, X., Zhang, X., Chen, Y., & Tian, J. J. (2009). Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B, 113, 9681–9686.

    Article  CAS  Google Scholar 

  • Liu, Y., Yu, D., Zeng, C., Miao, Z., & Dai, L. J. (2010). Biocompatible graphene oxide-based glucose biosensors. Langmuir, 26, 6158–6160.

    Article  CAS  Google Scholar 

  • Ma, Y. X., Shao, W. J., Sun, W., Kou, Y. L., Li, X., & Yang, H. P. (2018). One-step fabrication of β-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb(II), Cu(II) and methylene blue in aqueous solutions. Appl Surf Sci, 459, 544–553.

    Article  CAS  Google Scholar 

  • Maktedar, S. S., Mehetre, S. S., Avashthi, G., & Singh, M. J. (2017). In situ sonochemical reduction and direct functionalization of graphene oxide: a robust approach with thermal and biomedical applications. Ultrason Sonochem, 34, 67–77.

    Article  CAS  Google Scholar 

  • Mirkhani, V., Tangestaninejad, S., Yadollahi, B., & Alipanah, L. J. (2004). Efficient regio- and stereoselective ring opening of epoxides with alcohols, acetic acid and water catalyzed by ammonium decatungstocerate(IV). Cheninform, 35, 8213–8218.

    Google Scholar 

  • Ogoshi, T., Ichihara, Y., Yamagishi, T.-A., & Nakamoto, Y. J. (2010). Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-β-cyclodextrin. Chem Commun, 46, 6087–6089.

    Article  CAS  Google Scholar 

  • Rahmani, F., Mahdavi, M., Nouranian, S., & Alostaz, A. J. (2017). Confinement effects on the thermal stability of poly(ethylene oxide)/graphene nanocomposites: a reactive molecular dynamics simulation study. J Polym Sci Polym Phys, 55, 1026–1035.

    Article  CAS  Google Scholar 

  • Samuel, M. S., Selvarajan, E., Subramaniam, K., Mathimani, T., Seethappan, S., & Pugazhendhi, A. (2020). Synthesized β-cyclodextrin modified graphene oxide (β-CD-GO) composite for adsorption of cadmium and their toxicity profile in cervical cancer (HeLa) cell lines. Process Biochem, 93, 28–35.

    Article  CAS  Google Scholar 

  • Stankovich, S., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. J. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44, 3342–3347.

    Article  CAS  Google Scholar 

  • Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chem Rev, 98, 1743–1754.

    Article  CAS  Google Scholar 

  • Velmurugan, M., Karikalan, N., Chen, S. M., & Dai, Z. C. (2017). Studies on the influence of b-cyclodextrin on graphene oxide and its synergistic activity to the electrochemical detection of nitrobenzene. J Colloid Interface Sci, 490, 365–371.

    Article  CAS  Google Scholar 

  • Wang, G. H., Luo, Q. Y., Dai, J. L., & Deng, N. S. (2020). Adsorption of dichromate ions from aqueous solution onto magnetic graphene oxide modified by β-cyclodextrin. Environ Sci Pollut Res, 27, 30778–30788.

    Article  CAS  Google Scholar 

  • Zha, F., Li, S., & Chang, Y. J. (2008). Preparation and adsorption property of chitosan beads bearing β-cyclodextrin cross-linked by 1, 6-hexamethylene diisocyanate. Carbohydr Polym, 72, 456–461.

    Article  CAS  Google Scholar 

  • Zha, F., Huang, W., Wang, J., Chang, Y., Ding, J., & Ma, J. (2013). Kinetic and thermodynamic aspects of arsenate adsorption on aluminum oxide modified palygorskite nanocomposites. Chem Eng J, 215–216, 579–585.

    Article  Google Scholar 

  • Zheng, H. L., Gao, Y., Zhu, K. R., Wang, Q., Wakeel, M., Wahid, A., Alharbi, N. S., & Chen, C. L. (2018). Investigation of the adsorption mechanisms of Pb(II) and 1-naphthol by b-cyclodextrin modified graphene oxide nanosheets from aqueous solution. J Colloid Interface Sci, 530, 154–162.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Young Teacher Research Group Foundation of Northwest Normal University (NWNU-LKQN-18-21) and the Nature Science Fund of China (No. 21865031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Zha or Haifeng Tian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Zeng, H., Zha, F. et al. Synthesis of Graphene Oxide–Supported β-Cyclodextrin Adsorbent for Removal of p-Nitrophenol. Water Air Soil Pollut 231, 495 (2020). https://doi.org/10.1007/s11270-020-04865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04865-8

Keywords

Navigation