Skip to main content
Log in

Multi-objective optimization of hole dilation at inlet and outlet during machining of CFRP by μEDM using assisting-electrode and rotating tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machining of carbon fiber-reinforced polymers (CFRP) by traditional processes is quite challenging as damages namely breakage of fibers, delamination, and fiber pull-out occur during machining. Therefore, non-traditional machining process namely micro-electrical discharge machining (μEDM) is emerging to produce precise and high-quality features in CFRP. In this work, for machining CFRP, μEDM method coupled with rotary tool and assisting-electrode was used for efficient spark generation. Grey relational analysis (GRA) was performed to optimize the machining parameters viz. voltage (100, 130, 160, and 190 V), pulse duration (10, 20, 30, and 40 μs), and tool speed (200, 300, 400, and 500 RPM) that affect the output responses namely hole dilation at inlet (HDin) and outlet (HDout). The optimal condition of input parameters was found to be V1/T1/S1 (100 V/10 μs/200 RPM). The voltage was observed to be the most affecting factor with a contribution of 90.95% while tool speed and pulse duration had a contribution of 5.91% and 1.48%, respectively. It was also found that the material removal mechanism was a complex phenomenon where sparking occurred both at end face and side surface of the tool. The deposition of pyrolytic carbon particles that helps in continuing the sparking was observed in the micrographic images obtained through field emission scanning electron microscope (FESEM). The burning of the matrix due to thermal effect and spalling was also evident which led to the removal of the material from the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wang F, Yin J, Ma JW, Jia ZY, Yang Y, Niu B (2017) Effects of cutting edge radius and fiber cutting angle on the cutting-induced surface damage in machining of unidirectional CFRP composite laminates. Int J Adv Manuf Technol 91(9–12):3107–3120. https://doi.org/10.1007/s00170-017-0023-9

    Article  Google Scholar 

  2. El-Hofy MH, Soo SL, Aspinwall DK, Sim WM, Pearson D, Harden P (2011) Factors affecting workpiece surface integrity in slotting of CFRP. Procedia Eng 19:94–99. https://doi.org/10.1016/j.proeng.2011.11.085

    Article  Google Scholar 

  3. Marimuthu S, Antar M, Dunleavey J (2019) Characteristics of micro-hole formation during fibre laser drilling of aerospace superalloy. Precis Eng 55:339–348. https://doi.org/10.1016/j.precisioneng.2018.10.002

    Article  Google Scholar 

  4. Kumar R, Agrawal PK, Singh I (2018) Fabrication of micro holes in CFRP laminates using EDM. J Manuf Process 31:859–866. https://doi.org/10.1016/j.jmapro.2018.01.011

    Article  Google Scholar 

  5. Habib S, Okada A, Ichii S (2013) Effect of cutting direction on machining of carbon fiber reinforced plastic by electrical discharge machining process. Int J Mach Mach Mater 13(4):414–427. https://doi.org/10.1504/IJMMM.2013.054272

    Article  Google Scholar 

  6. Lau WS, Wang M, Lee WB (1990) Electrical discharge machining of carbon fiber composite materials. Int J Mach Tools Manuf 30(2):297–308. https://doi.org/10.1016/0890-6955(90)90138-9

    Article  Google Scholar 

  7. Hocheng H, Tsao CC (2005) The path towards delamination-free drilling of composite materials. J Mater Process Technol 167(2–3):251–264. https://doi.org/10.1016/j.jmatprotec.2005.06.039

    Article  Google Scholar 

  8. Dhanawade A, Kumar S (2017) Experimental study of delamination and kerf geometry of carbon epoxy composite machined by abrasive water jet. J Compos Mater 51(24):3373–3390. https://doi.org/10.1177/0021998316688950

    Article  Google Scholar 

  9. Hocheng H (1990) A failure analysis of water jet drilling in composite laminates. Int J Mach Tools Manuf 30(3):423–429. https://doi.org/10.1016/0890-6955(90)90186-M

    Article  Google Scholar 

  10. Caprino G, Tagliaferri V (1988) Maximum cutting speed in laser cutting of fiber reinforced plastics. Int J Mach Tools Manuf 28(4):389–398. https://doi.org/10.1016/0890-6955(88)90052-1

    Article  Google Scholar 

  11. Sheikh-Ahmad JY, Shinde SR (2016) Machinability of carbon/epoxy composites by electrical discharge machining. Int J Mach Mach Mater 18(1-2):3–17. https://doi.org/10.1504/IJMMM.2016.075452

    Article  Google Scholar 

  12. Sheikh-Ahmad JY (2016) Hole quality and damage in drilling carbon/epoxy composites by electrical discharge machining. Mater Manuf Process 31(7):941–950. https://doi.org/10.1080/10426914.2015.1048368

    Article  Google Scholar 

  13. Korlos A, Tzetzis D, Mansour G (2014) Investigation of the electro-discharge open-hole machining on the structural behavior of carbon fiber reinforced polymers. Appl Mech Mater 657:321–325. https://doi.org/10.4028/www.scientific.net/AMM.657.321

    Article  Google Scholar 

  14. Lodhi BK, Verma D, Shukla R (2014) Optimization of machining parameters in EDM of CFRP composite using Taguchi technique. Int J Mech Eng Technol 5(10):70–77

    Google Scholar 

  15. Lau WS, Lee WB (1991) A comparison between EDM wire-cut and laser cutting of carbon fiber composite materials. Mater Manuf Process 6(2):331–342. https://doi.org/10.1080/10426919108934760

    Article  Google Scholar 

  16. He W, Du S, Ming J, Ma W, Cao Y, Li X (2019) Fiber orientations effect on process performance for wire cut electrical discharge machining (WEDM) of 2D C/SiC composite. Int J Adv Manuf Technol 102(1-4):507–518. https://doi.org/10.1007/s00170-018-03210-y

    Article  Google Scholar 

  17. Banu A, Ali MY, Rahman MA, Konneh M (2019) Investigation of process parameters for stable micro dry wire electrical discharge machining. Int J Adv Manuf Technol 103:723–741. https://doi.org/10.1007/s00170-019-03603-7

    Article  Google Scholar 

  18. Habib S, Okada A (2016) Influence of electrical discharge machining parameters on cutting parameters of carbon fiber-reinforced plastic. Mach Sci Technol 20(1):99–114. https://doi.org/10.1080/10910344.2015.1133914

    Article  Google Scholar 

  19. Islam MM, Li CP, Won SJ, Ko TJ (2017) A deburring strategy in drilled hole of CFRP composites using EDM process. J Alloys Compd 703:477–485. https://doi.org/10.1016/j.jallcom.2017.02.001

    Article  Google Scholar 

  20. Kurniawan R, Kumaran ST, Prabu VA, Zhen Y, Park KM, Kwak YI, Islam MM, Ko TJ (2017) Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite. Measurement 110:98–115. https://doi.org/10.1016/j.measurement.2017.06.008

    Article  Google Scholar 

  21. Yue X, Yang X, Tian J, He Z, Fan Y (2018) Thermal, mechanical and chemical material removal mechanism of carbon fiber reinforced polymers in electrical discharge machining. Int J Mach Tools Manuf 133:4–17. https://doi.org/10.1016/j.ijmachtools.2018.05.004

    Article  Google Scholar 

  22. Dutta H, Debnath K, Sarma DK (2020) A study of wire electrical discharge machining of carbon fibre reinforced plastic. In: Shunmugam M, Kanthababu M (eds) Advances in unconventional machining and composites. Lecture Notes on Multidisciplinary Industrial Engineering. pp 451-460. Springer, Singapore. (Proceedings of the AIMTDR 2018). https://doi.org/10.1007/978-981-32-9471-4_36

  23. Kumar R, Kumar A, Singh I (2018) Electric discharge drilling of micro holes in CFRP laminates. J Mater Process Technol 259:150–158. https://doi.org/10.1016/j.jmatprotec.2018.04.031

    Article  Google Scholar 

  24. Teicher U, Muller S, Munzner J, Nestler A (2013) Micro-EDM of carbon fibre-reinforced plastics. Procedia CIRP 6:320–325. https://doi.org/10.1016/j.procir.2013.03.092

    Article  Google Scholar 

  25. Park SH, Kim G, Lee W, Min BK, Lee SW, Kim TG (2015) Microhole machining on precision CFRP components using electrical discharging machining. In 20th International Conference on Composite Materials, Copenhagen, Denmark

  26. Dutta H, Debnath K, Sarma DK (2019) A study of material removal and surface characteristics in micro-electrical discharge machining of carbon fiber reinforced plastics. Polym Compos 40(10):4033–4041. https://doi.org/10.1002/pc.25264

    Article  Google Scholar 

  27. Hyde JM, Cadet L, Montgomery J, Brown CA (2014) Multi-scale areal topographic analysis of surfaces created by micro-EDM and functional correlations with discharge energy. Surf Topogr Metrol Prop 2(4):1–9. https://doi.org/10.1088/2051-672X/2/4/045001

    Article  Google Scholar 

  28. Ay M, Çaydaş U, Hasçalık A (2013) Optimization of micro-EDM drilling of Inconel 718 superalloy. Int J Adv Manuf Technol 66(5–8):1015–1023. https://doi.org/10.1007/s00170-012-4385-8

    Article  Google Scholar 

  29. Kumar SS, Uthayakumar M, Kumaran ST, Parameswaran P, Mohandas E, Kempulraj G, Babu BR, Natarajan SA (2015) Parametric optimization of wire electrical discharge machining on aluminium based composites through grey relational analysis. J Manuf Process 20:33–39. https://doi.org/10.1016/j.jmapro.2015.09.011

    Article  Google Scholar 

  30. Kibria G, Bhattacharyya B (2017) Microelectrical discharge machining of Ti-6Al-4 V: Implementation of innovative machining strategies. In: Microfabrication and Precision Engineering. Woodhead Publishing, pp 99-142

  31. Jahan MP, Rahman M, Wong YS (2014) Micro-electrical discharge machining (micro-EDM): processes, varieties, and applications. In: Hashmi S, Batalha GF, CJV T, Yilbas B (eds) Comprehensive materials processing, vol 11. Elsevier, pp 333–371. https://doi.org/10.1016/B978-0-08-096532-1.01107-9

  32. Ghosh A, Mallik AK (1996) Book on manufacturing science, chapter 6. East–West, India, p 377

    Google Scholar 

  33. Singh PN, Raghukandan K, Pai BC (2004) Optimization by grey relational analysis of EDM parameters on machining Al–10% SiCP composites. J Mater Process Technol 155:1658–1661. https://doi.org/10.1016/j.jmatprotec.2004.04.322

    Article  Google Scholar 

  34. Mohri N, Fukusima Y, Fukuzawa Y, Tani T, Saito N (2003) Layer generation process on work-piece in electrical discharge machining. CIRP Ann 52(1):157–160. https://doi.org/10.1016/S0007-8506(07)60554-X

    Article  Google Scholar 

  35. Fukuzawa Y, Mohri N, Tani T, Muttamara A (2004) Electrical discharge machining properties of noble crystals. J Mater Process Technol 149(1–3):393–397. https://doi.org/10.1016/j.jmatprotec.2003.12.028

    Article  Google Scholar 

  36. Vidya S, Barman S, Chebolu A (2015) Effects of different cavity geometries on machining performance in micro-electrical discharge milling. ASME J Micro Nano Manuf 3(1):011007. https://doi.org/10.1115/1.4029275

    Article  Google Scholar 

  37. Khanra AK, Pathak LC, Godkhindi MM (2007) Microanalysis of debris formed during electrical discharge machining (EDM). J Mater Sci 42(3):872–877. https://doi.org/10.1007/s10853-006-0020-0

    Article  Google Scholar 

  38. Kou Z, Han F (2018) Machining characteristics and removal mechanisms of moving electric arcs in high-speed EDM milling. J Manuf Process 32:676–684. https://doi.org/10.1016/j.jmapro.2018.03.037

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Lakshi Saikia, CSIR-NEIST, Jorhat, India, for allowing to use the FESEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrishikesh Dutta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, H., Debnath, K. & Sarma, D.K. Multi-objective optimization of hole dilation at inlet and outlet during machining of CFRP by μEDM using assisting-electrode and rotating tool. Int J Adv Manuf Technol 110, 2305–2322 (2020). https://doi.org/10.1007/s00170-020-05987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05987-3

Keywords

Navigation