Skip to main content
Log in

Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

On 23 July 2016 after 05:00 UTC, the first 48-antenna stage of the Siberian Radioheliograph detected two flares, M7.6 and M5.5, which occurred within half an hour in the same active region. Their multi-instrument analysis reveals the following. The microwave spectra were flattened at low frequencies and the spectrum of the stronger burst had a lower turnover frequency. Each flare was eruptive, emitted hard X-rays and \(\gamma \)-rays exceeding 800 keV, and had a rare three-ribbon configuration. An extended hard X-ray source associated with a longest middle ribbon was observed in the second flare. Unusual properties of the microwave spectra are accounted for by a distributed multi-loop system in an asymmetric magnetic configuration that our modeling supports. Microwave images did not resolve compact configurations in these flares, which may also be revealed incompletely in hard X-ray images because of their limited dynamic range. Being apparently simple and compact, non-thermal sources corresponded to the structures observed in the extreme ultraviolet. In the scenario proposed for two successive eruptive flares in a configuration with a coronal magnetic null, the first filament eruption causes a flare and facilitates the second eruption that also results in a flare. Three persistent flare ribbons reflect magnetic reconnection at the coronal-null region forced by the filament motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510(1), 485. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aulanier, G., Janvier, M., Schmieder, B.: 2012, The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys. 543, A110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bamba, Y., Inoue, S., Kusano, K., Shiota, D.: 2017, Triggering process of the X1.0 three-ribbon flare in the great active region NOAA 12192. Astrophys. J. 838(2), 134. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carmichael, H.: 1964, A Process for Flares 50, NASA, Science and Technical Information Division, Washington, 451. ADS.

    Google Scholar 

  • Chandra, R., Chen, P.F., Joshi, R., Joshi, B., Schmieder, B.: 2018, Observations of two successive EUV waves and their mode conversion. Astrophys. J. 863(1), 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, B., Yu, S., Reeves, K.K., Gary, D.E.: 2020, Microwave spectral imaging of an erupting magnetic flux rope: implications for the standard solar flare model in three dimensions. Astrophys. J. Lett. 895(2), L50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dulk, G.A., Marsh, K.A.: 1982, Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J. 259, 350. DOI. ADS.

    Article  ADS  Google Scholar 

  • Filippov, B.: 1999, Observation of a 3d magnetic null point in the solar corona. Solar Phys. 185(2), 297. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Filippov, B., Golub, L., Koutchmy, S.: 2009, X-ray jet dynamics in a polar coronal hole region. Solar Phys. 254, 259. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gary, D.E., Chen, B., Dennis, B.R., Fleishman, G.D., Hurford, G.J., Krucker, S., McTiernan, J.M., Nita, G.M., Shih, A.Y., White, S.M., Yu, S.: 2018, Microwave and hard X-ray observations of the 2017 September 10 solar limb flare. Astrophys. J. 863(1), 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Chertok, I.M., Slemzin, V.A., Kuzin, S.V., Ignat’ev, A.P., Pertsov, A.A., Zhitnik, I.A., Delaboudinière, J.-P., Auchère, F.: 2005, CORONAS-F/SPIRIT EUV observations of October–November 2003 solar eruptive events in combination with SOHO/EIT data. J. Geophys. Res. 110, A09S07. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Zandanov, V.G., Baranov, N.Y., Shibasaki, K.: 2006, Observations of prominence eruptions with two radioheliographs, SSRT, and NoRH. Publ. Astron. Soc. Japan 58, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Slemzin, V.A., Chertok, I.M., Kuzmenko, I.V., Shibasaki, K.: 2008, Absorption phenomena and a probable blast wave in the 13 July 2004 eruptive event. Solar Phys. 253(1-2), 263. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Chertok, I.M., Kuzmenko, I.V., Afanasyev, A.N., Meshalkina, N.S., Kalashnikov, S.S., Kubo, Y.: 2011a, Coronal shock waves, EUV waves, and their relation to CMEs. I. Reconciliation of “EIT waves”, Type II radio bursts, and leading edges of CMEs. Solar Phys. 273, 433. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kuzmenko, I.V., Chertok, I.M., Uralov, A.M.: 2011b, Solar flare-related eruptions followed by long-lasting occultation of the emission in the He II 304 Å line and in microwaves. Astron. Rep. 55, 637. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Uralov, A.M., Meshalkina, N.S., Kochanov, A.A.: 2013a, An updated view of solar eruptive flares and the development of shocks and CMEs: history of the 2006 December 13 GLE-productive extreme event. Publ. Astron. Soc. Japan 65, S9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kuz’menko, I.V., Uralov, A.M., Chertok, I.M., Kochanov, A.A.: 2013b, Microwave negative bursts as indications of reconnection between eruptive filaments and a large-scale coronal magnetic environment. Publ. Astron. Soc. Japan 65, S10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Slemzin, V.A., Chertok, I.M., Filippov, B.P., Rudenko, G.V., Temmer, M.: 2014, A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. I. Unusual history of an eruptive filament. Solar Phys. 289, 289. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Kuzmenko, I.V., Kochanov, A.A., Chertok, I.M., Kalashnikov, S.S.: 2015, Responsibility of a filament eruption for the initiation of a flare, CME, and blast wave, and its possible transformation into a bow shock. Solar Phys. 290, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Kochanov, A.A., Kuzmenko, I.V., Prosovetsky, D.V., Egorov, Y.I., Fainshtein, V.G., Kashapova, L.K.: 2016, A tiny eruptive filament as a flux-rope progenitor and driver of a large-scale CME and wave. Solar Phys. 291, 1173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kochanov, A.A., Uralov, A.M., Slemzin, V.A., Rodkin, D.G., Goryaev, F.F., Kiselev, V.I., Myshyakov, I.I.: 2019, Development of a fast CME and properties of a related interplanetary transient. Solar Phys. 294(10), 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V., Uralov, A.M., Kiselev, V.I., Kochanov, A.A.: 2017, The 26 December 2001 solar eruptive event responsible for GLE63. II. Multi-loop structure of microwave sources in a major long-duration flare. Solar Phys. 292(1), 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guidice, D.A.: 1979, Sagamore Hill radio observatory, Air Force geophysics laboratory, Hanscom Air Force base, Massachusetts 01731. Report. Bull. Am. Astron. Soc. 11, 311. ADS.

    ADS  Google Scholar 

  • Guidice, D.A., Cliver, E.W., Barron, W.R., Kahler, S.: 1981, The Air Force RSTN system. Bull. Am. Astron. Soc. 13, 553. ADS.

    ADS  Google Scholar 

  • Hannah, I.G., Kontar, E.P.: 2011, The spectral difference between solar flare HXR coronal and footpoint sources due to wave–particle interactions. Astron. Astrophys. 529, A109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hansen, J.F., Tripathi, S.K.P., Bellan, P.M.: 2004, Co- and counter-helicity interaction between two adjacent laboratory prominences. Phys. Plasmas 11(6), 3177. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I: Evaporating flare model. Solar Phys. 34(2), 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Inhester, B., Birn, J., Hesse, M.: 1992, The evolution of line tied coronal arcades including a converging footpoint motion. Solar Phys. 138(2), 257. DOI. ADS.

    Article  ADS  Google Scholar 

  • Janvier, M., Aulanier, G., Pariat, E., Démoulin, P.: 2013, The standard flare model in three dimensions. III. Slip-running reconnection properties. Astron. Astrophys. 555, A77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kashapova, L.K., Tokhchukova, S.K., Zhdanov, D.A., Bogod, V.M., Rudenko, G.V.: 2013, The subsecond pulses during the August 10, 2011 flare by observations of RATAN-600 and the 4-8 GHz Siberian solar spectropolarimeter. Geomagn. Aeron. 53(8), 1021. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kochanov, A.A., Anfinogentov, S.A., Prosovetsky, D.V., Rudenko, G.V., Grechnev, V.V.: 2013, Imaging of the solar atmosphere by the Siberian Solar Radio Telescope at 5.7 GHz with an enhanced dynamic range. Publ. Astron. Soc. Japan 65, S19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50(1), 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krucker, S., Christe, S., Glesener, L., Ishikawa, S.-n., Ramsey, B., Takahashi, T., Watanabe, S., Saito, S., Gubarev, M., Kilaru, K., et al.: 2014, First images from the Focusing Optics X-ray Solar Imager. Astrophys. J. Lett. 793(2), L32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kundu, M.R., Nitta, N., White, S.M., Shibasaki, K., Enome, S., Sakao, T., Kosugi, T., Sakurai, T.: 1995, Microwave and hard X-ray observations of footpoint emission from solar flares. Astrophys. J. 454, 522. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuroda, N., Gary, D.E., Wang, H., Fleishman, G.D., Nita, G.M., Jing, J.: 2018, Three-dimensional forward-fit modeling of the hard X-ray and microwave emissions of the 2015 June 22 M6.5 flare. Astrophys. J. 852(1), 32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lee, J.: 2018, Analysis of solar microwave burst spectrum, I. Nonuniform magnetic field. J. Astron. Space Sci. 35, 211. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lee, J., Nita, G.M., Gary, D.E.: 2009, Electron energy and magnetic field derived from solar microwave burst spectra. Astrophys. J. 696(1), 274. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lesovoi, S., Kobets, V.: 2017, Correlation plots of the Siberian Radioheliograph. Solar-Terr. Phys. 3(1), 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lesovoi, S.V., Altyntsev, A.T., Ivanov, E.F., Gubin, A.V.: 2014, A 96-antenna radioheliograph. Res. Astron. Astrophys. 14, 864. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lesovoi, S., Altyntsev, A., Kochanov, A., Grechnev, V., Gubin, A., Zhdanov, D., Ivanov, E., Uralov, A., Kashapova, L., Kuznetsov, A., Meshalkina, N., Sych, R.: 2017, Siberian Radioheliograph: first results. Solar-Terr. Phys. 3(1), 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, C., Lee, J., Gary, D.E., Wang, H.: 2007, The ribbon-like hard X-ray emission in a sigmoidal solar active region. Astrophys. J. Lett. 658(2), L127. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, C., Deng, N., Lee, J., Wiegelmann, T., Moore, R.L., Wang, H.: 2013, Evidence for solar tether-cutting magnetic reconnection from coronal field extrapolations. Astrophys. J. Lett. 778(2), L36. DOI. ADS.

    Article  ADS  Google Scholar 

  • Longcope, D.W., Beveridge, C.: 2007, A quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare. Astrophys. J. 669(1), 621. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lynch, B.J., Antiochos, S.K., DeVore, C.R., Luhmann, J.G., Zurbuchen, T.H.: 2008, Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J. 683(2), 1192. DOI. ADS.

    Article  ADS  Google Scholar 

  • Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: 2009, The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559. DOI. ADS.

    Article  ADS  Google Scholar 

  • Masson, S., Pariat, É., Valori, G., Deng, N., Liu, C., Wang, H., Reid, H.: 2017, Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare. Astron. Astrophys. 604, A76. DOI. ADS.

    Article  ADS  Google Scholar 

  • Masuda, S., Kosugi, T., Hudson, H.S.: 2001, A hard X-ray two-ribbon flare observed with Yohkoh/HXT. Solar Phys. 204, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Meshalkina, N.S., Uralov, A.M., Grechnev, V.V., Altyntsev, A.T., Kashapova, L.K.: 2009, Eruptions of magnetic ropes in two homologous solar events of 2002 June 1 and 2: a key to understanding an enigmatic flare. Publ. Astron. Soc. Japan 61, 791. DOI. ADS.

    Article  ADS  Google Scholar 

  • Metcalf, T.R., Alexander, D.: 1999, Coronal trapping of energetic flare particles: Yohkoh/HXT observations. Astrophys. J. 522, 1108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552(2), 833. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakajima, H., Sekiguchi, H., Sawa, M., Kai, K., Kawashima, S.: 1985, The radiometer and polarimeters at 80, 35, and 17 GHz for solar observations at Nobeyama. Publ. Astron. Soc. Japan 37, 163. ADS.

    ADS  Google Scholar 

  • Nakajima, H., Nishio, M., Enome, S., Shibasaki, K., Takano, T., Hanaoka, Y., Torii, C., Sekiguchi, H., Bushimata, T., Kawashima, S., Shinohara, N., Irimajiri, Y., Koshiishi, H., Kosugi, T., Shiomi, Y., Sawa, M., Kai, K.: 1994, The Nobeyama radioheliograph. Proc. IEEE 82, 705. ADS.

    Article  ADS  Google Scholar 

  • Nita, G.M., Fleishman, G.D., Kuznetsov, A.A., Kontar, E.P., Gary, D.E.: 2015, Three-dimensional radio and X-ray modeling and data analysis software: revealing flare complexity. Astrophys. J. 799(2), 236. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pariat, E., Antiochos, S.K., DeVore, C.R.: 2009, A model for solar polar jets. Astrophys. J. 691(1), 61. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pariat, E., Antiochos, S.K., DeVore, C.R.: 2010, Three-dimensional modeling of quasi-homologous solar jets. Astrophys. J. 714(2), 1762. DOI. ADS.

    Article  ADS  Google Scholar 

  • Raouafi, N.E., Patsourakos, S., Pariat, E., Young, P.R., Sterling, A.C., Savcheva, A., Shimojo, M., Moreno-Insertis, F., DeVore, C.R., Archontis, V., Török, T., Mason, H., Curdt, W., Meyer, K., Dalmasse, K., Matsui, Y.: 2016, Solar coronal jets: observations, theory, and modeling. Space Sci. Rev. 201(1-4), 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reid, H.A.S., Vilmer, N., Aulanier, G., Pariat, E.: 2012, X-ray and ultraviolet investigation into the magnetic connectivity of a solar flare. Astron. Astrophys. 547, A52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rudenko, G.V., Myshyakov, I.I.: 2009, Analysis of reconstruction methods for nonlinear force-free fields. Solar Phys. 257(2), 287. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., et al.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Silva, A.V.R., Wang, H., Gary, D.E.: 2000, Correlation of microwave and hard X-ray spectral parameters. Astrophys. J. 545(2), 1116. DOI. ADS.

    Article  ADS  Google Scholar 

  • Slemzin, V., Chertok, I., Grechnev, V., Ignat’ev, A., Kuzin, S., Pertsov, A., Zhitnik, I., Delaboudinière, J.-P.: 2004, Multi-wavelength observations of CME-associated structures on the Sun with the CORONAS-F/SPIRIT EUV telescope. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, IAU Symp. 223, 533. DOI. ADS.

    Chapter  Google Scholar 

  • Stähli, M., Gary, D.E., Hurford, G.J.: 1989, High resolution microwave spectra of solar bursts. Solar Phys. 120(2), 351. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sterling, A.C., Moore, R.L., Falconer, D.A., Panesar, N.K., Akiyama, S., Yashiro, S., Gopalswamy, N.: 2016, Minifilament eruptions that drive coronal jets in a solar active region. Astrophys. J. 821(2), 100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211(5050), 695. DOI. ADS.

    Article  ADS  Google Scholar 

  • Torii, C., Tsukiji, Y., Kobayashi, S., Yoshimi, N., Tanaka, H., Enome, S.: 1979, Full-automatic radiopolarimeters for solar patrol at microwave frequencies. Proc. Res. Inst. Atmos. Nagoya Univ. 26, 129. ADS.

    Google Scholar 

  • Uralov, A.M., Rudenko, G.V., Rudenko, I.G.: 2006, 17 GHz neutral line associated sources: birth, motion, and projection effect. Publ. Astron. Soc. Japan 58, 21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uralov, A.M., Lesovoi, S.V., Zandanov, V.G., Grechnev, V.V.: 2002, Dual-filament initiation of a coronal mass ejection: observations and model. Solar Phys. 208(1), 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uralov, A.M., Grechnev, V.V., Rudenko, G.V., Rudenko, I.G., Nakajima, H.: 2008, Microwave neutral line associated source and a current sheet. Solar Phys. 249(2), 315. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uralov, A.M., Grechnev, V.V., Rudenko, G.V., Myshyakov, I.I., Chertok, I.M., Filippov, B.P., Slemzin, V.A.: 2014, A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. III. Catastrophe of the eruptive filament at a magnetic null point and formation of an opposite-handedness CME. Solar Phys. 289, 3747. DOI. ADS.

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Baker, D., Török, T., Pariat, E., Green, L.M., Williams, D.R., Carlyle, J., Valori, G., Démoulin, P., Kliem, B., Long, D.M., Matthews, S.A., Malherbe, J.-M.: 2014, Coronal magnetic reconnection driven by CME expansion—the 2011 June 7 event. Astrophys. J. 788, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, H., Liu, C.: 2012, Circular ribbon flares and homologous jets. Astrophys. J. 760(2), 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, H., Liu, C., Deng, N., Zeng, Z., Xu, Y., Jing, J., Cao, W.: 2014, Study of two successive three-ribbon solar flares on 2012 July 6. Astrophys. J. Lett. 781(1), L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, An optimization approach to reconstructing force-free fields. Astrophys. J. 540(2), 1150. DOI. ADS.

    Article  ADS  Google Scholar 

  • White, S.M., Benz, A.O., Christe, S., Fárník, F., Kundu, M.R., Mann, G., Ning, Z., Raulin, J.-P., Silva-Válio, A.V.R., Saint-Hilaire, P., Vilmer, N., Warmuth, A.: 2011, The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159(1-4), 225. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wyper, P.F., Antiochos, S.K., DeVore, C.R.: 2017, A universal model for solar eruptions. Nature 544(7651), 452. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhdanov, D.A., Zandanov, V.G.: 2011, Broadband microwave spectropolarimeter. Cent. Eur. Astrophys. Bull. 35, 223. ADS.

    ADS  Google Scholar 

  • Zhdanov, D.A., Zandanov, V.G.: 2015, Observations of microwave fine structures by the Badary Broadband Microwave Spectropolarimeter and the Siberian Solar Radio Telescope. Solar Phys. 290, 287. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zimovets, I.V., Kuznetsov, S.A., Struminsky, A.B.: 2013, Fine structure of the sources of quasi-periodic pulsations in “single-loop” solar flares. Astron. Lett. 39(4), 267. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L.K. Kashapova for useful discussions. We appreciate our colleagues from the Radio Astrophysical Department and the Radio Astrophysical Observatory in Badary. We thank the anonymous reviewer for valuable remarks and suggestions, which helped us to refine the article.

This study was funded by the Russian Science Foundation under grant 18-12-00172. The development of the methods used in Sections 2.1 and 4 was supported by the Basic Research Program II.16. The SRH and BBMS data were obtained using the Unique Research Facility Siberian Solar Radio Telescope (ckp-rf.ru/usu/73606).

We thank the NASA/SDO and the AIA and HMI science teams, the teams operating RHESSI, the Nobeyama solar facilities, and the US AF RSTN network for the data used here. We thank the International Consortium for the continued operation of Nobeyama Radioheliograph until shut down on 31 March 2020. We are grateful to the team maintaining the CME Catalog at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Grechnev.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grechnev, V.V., Meshalkina, N.S., Uralov, A.M. et al. Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra. Sol Phys 295, 128 (2020). https://doi.org/10.1007/s11207-020-01702-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01702-3

Keywords

Navigation