Skip to main content

Advertisement

Log in

Relaxation process of a two-level system in a coherent superposition of two environments

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Relaxation processes are studied for a two-level system which is placed under the influenced by a superposition of two environments. Two cases are treated: one is that the two-level system interacts with the environment via both linear dissipative coupling and pure dephasing coupling in the Markovian limit and the other uses an exactly solvable single-excitation spin-boson model. In both the cases, an ancillary two-level system determines which environment of the two actually interacts with the relevant two-level system. In the Markovian limit, the reduced time-evolution of the two-level system is characterized by the longitudinal relaxation time \(T_{1}\) and the transversal relaxation time \(T_{2}\) which satisfy the inequality \(2T_{1}\ge T_{2}\). If the strict inequality \(2T_{1}>T_{2}\) is fulfilled, the coherence of the two-level system can be definitely enhanced by the environmental superposition effect. If the equality \(2T_{1}=T_{2}\) holds, it can be improved probabilistically. On the other hand, in the exactly solvable model, although the non-Markovian effect is observed in the reduced time-evolution, the coherence can be improved only probabilistically since the model does not include a pure dephasing coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1985)

    MATH  Google Scholar 

  2. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  3. Carmichael, H.: An Open Quantum Systems: Approach to Quantum Optics. Springer, Berlin (1991)

    MATH  Google Scholar 

  4. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  5. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2014)

    ADS  MathSciNet  Google Scholar 

  6. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Reid, M.D., Drummond, P.D., Bowen, W.P., Cavalcanti, E.G., Lam, K.P., Bachor, H.A., Andersen, U.L., Leuchs, G.: The Einstein–Podolsky–Rosen paradox: from concepts to applications. Rev. Mod. Phys. 81, 1727 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    ADS  Google Scholar 

  9. Emary, C., Lambert, N., Nori, F.: Leggett–Garg inequalities. Rep. Prog. Phys. 77, 016001 (2014)

    ADS  MathSciNet  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. A 400, 1818 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Gallager, R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)

    MATH  Google Scholar 

  18. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    MATH  Google Scholar 

  19. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)

    ADS  MathSciNet  Google Scholar 

  20. Ban, M.: Photon-echo technique for reducing the decoherence of a quantum bit. J. Mod. Opt. 45, 2315 (1998)

    ADS  Google Scholar 

  21. Vitali, D., Tombesi, P.: Using parity kicks for decoherence control. Phys. Rev. A 59, 4178 (1999)

    ADS  Google Scholar 

  22. Uchiyama, C., Aihara, M.: Multipulse control of decoherence. Phys. Rev. A 66, 032313 (2002)

    ADS  Google Scholar 

  23. Falci, G., D’Arrigo, M., Mastellone, A., Paladino, E.: Dynamical suppression of telegraph and \(1/f\) noise due to quantum bistable fluctuators. Phys. Rev. A 70, 040101 (2004)

    ADS  Google Scholar 

  24. Khodjasteh, K., Lidar, D.A.: Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett. 95, 180501 (2005)

    ADS  Google Scholar 

  25. Gutmann, H., Wilhelm, F.K., Kaminsky, W.K., Lloyd, S.: Compensation of decoherence from telegraph noise by means of an open-loop quantum-control technique. Phys. Rev. A 71, 020302 (2005)

    ADS  Google Scholar 

  26. Santos, L.F., Viola, L.: Dynamical control of qubit coherence: random versus deterministic schemes. Phys. Rev. A 72, 062303 (2005)

    ADS  Google Scholar 

  27. Shor, P.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    ADS  Google Scholar 

  28. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Zanardi, P., Resetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    ADS  Google Scholar 

  30. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    ADS  Google Scholar 

  31. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)

    ADS  Google Scholar 

  32. Sun, Q., Al-Amri, M., Luiz, D., Suhail, Z.M.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    ADS  Google Scholar 

  33. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Google Scholar 

  34. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    ADS  Google Scholar 

  35. Li, W.J., He, Z., Wang, Q.: Protecting distribution entanglement for two-qubit state using weak measurement and reversal. Int. J. Theor. Phys. 56, 2813 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Wang, Q., Tang, J.S., He, Z., Yuan, J.B.: Decoherence suppression in phase decoherence environment using weak measurement and quantum measurement reversal. Int. J. Theor. Phys. 57, 3682 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Xiao, X., Fang, M.F., Li, Y.L.: Non-Markovian dynamics of two qubits driven by classical fields: population trapping and entanglement preservation. J. Phys. B 43, 185505 (2010)

    ADS  Google Scholar 

  38. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system. Phys. Rev. A 91, 052105 (2015)

    ADS  Google Scholar 

  39. Ren, Y.K., Tang, L.M., Zeng, H.S.: Protection of quantum Fisher information in entangled states via classical driving. Quant. Inf. Process. 15, 5011 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Huang, Z., Situ, H.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quant. Inf. Process. 16, 222 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Gholipour, H., Mortezapour, A., Nosrati, F., Franco, R.L.: Quantumness and memory of one qubit in a dissipative cavity under classical control. Ann. Phys. 414, 168073 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Mortezapour, A., Nourmandipour, A., Gholipour, H.: The effect of classical driving field on the spectrum of a qubit and entanglement swapping inside dissipative cavities. Quant. Inf. Process. 19, 136 (2020)

    ADS  MathSciNet  Google Scholar 

  43. Chiribella, G.: Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301 (2012)

    ADS  Google Scholar 

  44. Ibnouhsein, I., Grinbaum, A.: Information-theoretic constraints on correlations with indefinite causal order. Phys. Rev. A 92, 042124 (2015)

    ADS  MathSciNet  Google Scholar 

  45. Ebler, D., Salek, S., Chiribella, G.: Enhanced communication with the assistance of indefinite causal order. Phys. Rev. Lett. 120, 120502 (2018)

    ADS  Google Scholar 

  46. Goswami, K., Giarmatzi, C., Kewming, M., Costa, F., Branciard, C., Romero, J., White, A.G.: Indefinite causal order in a quantum switch. Phys. Rev. Lett. 121, 090503 (2018)

    ADS  Google Scholar 

  47. Guerin, P.A., Rubino, G., Brukner, C.: Communication through quantum-controlled noise. Phys. Rev. A 99, 062317 (2019)

    ADS  Google Scholar 

  48. Jia, D., Costa, F.: Causal order as a resource for quantum communication. Phys. Rev. A 100, 052319 (2019)

    ADS  Google Scholar 

  49. Guo, Y., Hu, X.M., Hou, Z.B., Cao, H., Cui, J.M., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C., Chiribella, G.: Experimental transmission of quantum information using a superposition of causal orders. Phys. Rev. Lett. 124, 030502 (2020)

    ADS  Google Scholar 

  50. Loizeau, N., Grinbaum, A.: Channel capacity enhancement with indefinite causal order. Phys. Rev. A 101, 012340 (2020)

    ADS  Google Scholar 

  51. Procopio, L.M., Delgado, F., Enriquez, M., Belabas, N., Levenson, J.A.: Sending classical information via three noisy channels in superposition of causal orders. Phys. Rev. A 101, 012346 (2020)

    ADS  Google Scholar 

  52. Mukhopadhyay, C., Pati, A.K.: Superposition of causal order enables perfect quantum teleportation with very noisy singlets. LANL arXiv:1901.07626 [quant-ph] (2019)

  53. Cardoso-Isidoro, C., Delgado, F.: Featuring causal order in teleportation of two quantum teleportation channels. LANL arXiv:1911.04550 [quant-ph] (2019)

  54. Zhao, X., Yang, Y., Chiribella, G.: Quantum metrology with indefinite causal order. LANL arXiv:1912.02449 [quant-ph] (2019)

  55. Chiribella, G., Kristjaánsson, H.: Quantum Shannon theory with superpositions of trajectories. Proc. R. Soc. A 475, 20180903 (2019)

    ADS  MathSciNet  Google Scholar 

  56. Abbott, A.A., Wechs, J., Horsman, D., Mhalla, M., Branciard, C.: Communication through coherent control of quantum channels. LANL arXiv:1810.09826 [quant-ph] (2018)

  57. Oi, D.K.L.: Interference of quantum channels. Phys. Rev. Lett. 91, 067902 (2002)

    ADS  Google Scholar 

  58. Breuer, H.P., Amato, G., Vacchini, B.: Mixing-induced quantum non-Markovianity and information flow. New J. Phys. 20, 043007 (2018)

    ADS  Google Scholar 

  59. Kraus, K.: States, Effects, and Operations. Springer, Berlin (1983)

    MATH  Google Scholar 

  60. Kubo, R.: Generalized cumulant expansion method. J. Phys. Soc. Jpn. 17, 1100 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Kubo, R.: Stochastic Liouville equations. J. Math. Phys. 4, 174 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Fano, U.: Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29, 74 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Crawford, J.A.: An alternative method of Quantization: the existence of classical fields. Nuovo Cimento 5, 689 (1958)

    Google Scholar 

  64. Schmutz, M.: Real-time Green’s functions in many body problems. Z. Phys. B 30, 97 (1978)

    ADS  MathSciNet  Google Scholar 

  65. Bloch, F.: Nuclear induction. Phys. Rev. 70, 460 (1946)

    ADS  Google Scholar 

  66. King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47, 192 (2001)

    MathSciNet  MATH  Google Scholar 

  67. Ban, M., Kitajima, S., Shibata, F.: Decoherence of entanglement in the Bloch channel. J. Phys. A 38, 4235 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Bellomo, B., Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    ADS  Google Scholar 

  69. Bellomo, B., Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    ADS  Google Scholar 

  70. Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. A 86, 044101 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Ban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, M. Relaxation process of a two-level system in a coherent superposition of two environments. Quantum Inf Process 19, 351 (2020). https://doi.org/10.1007/s11128-020-02856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02856-6

Keywords

Navigation