Skip to main content
Log in

The process of embryo abortion of stenospermocarpic grape and it develops into plantlet in vitro using embryo rescue

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Using stenospermocarpic grapes as female parents could improve the seedless ratio of offspring via embryo rescue techniques, so they are widely used for breeding seedless grapes. Here, we report the variation in phenotype, endogenous hormones, and internal cellular structure of ovules during embryo abortion in ‘Thompson Seedless’. Moreover, we used the stenospermocarpic grapes as female parents to breed new seedless grapes. Our result indicated that the seed coat of abnormal ovules turned brown from 38 to 42 days after flowering (DAF). In hormones level, two ratios of endogenous hormones’ content [gibberellic acid (GA3) + indole-3-acetic acid (IAA)]/abscisic acid (ABA) and zeatin riboside (ZR) /abscisic acid (ABA) had decreased by 36 DAF. In paraffin sections of embryo sac, indicated that there were few or no embryos in ovules were observed from 37 to 42 DAF. Importantly, the globular embryos in ‘Thompson Seedless’ were significantly smaller than those in ‘Ruby Seedless’ at 40 DAF, indicating the former had a lower embryo rescue efficiency as a female parent; accordingly, the most suitable time for embryo cultured in vitro was 39 DAF for ‘Thompson Seedless’. Result from embryo rescue, demonstrated that 5 mg/L exogenous brassinolide (BR) promoted embryo recovery, embryo germination, and polyembryony formation of ‘Flame Seedless’. Concurrently, WPM medium containing 1 µM of 6-BA helped embryos germinate into normal plantlets and reduced the abnormal plantlet development percentage. A total of 3573 hybrid ovules and 402 new progeny plants were obtained using the stenospermocarpic grapes as female parents crossed with disease-resistant Chinese wild grapes, among which 212 progeny with seedless trait and 23 with disease-resistant were detected by molecular markers, respectively.

Key message

By studying phenotype, hormone, and anatomy, the optimal time for embryo rescue in Vitis vinifera cv. ‘Thompson Seedless’ was found. In all, 402 new seedless and disease-resistant hybrids were obtained via embryo rescue when using stenospermocarpic grapevine cultivars as female parents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DAP:

Days after pollination

DAF:

Days after flowering

IAA:

Indole-3-acetic acid

6-BA:

6-Benzylaminopurine

BR:

Brassinolide

IBA:

Indole-3-butytric acid

MS:

Murashige and Skoog

WPM:

Wood plant medium

ER:

Emershad and Ramming

RAPD:

Random amplified polymorphic DNA

GA3 :

Gibberellic acid

ABA:

Abscisic acid

ZR:

Zeatin riboside

CCC:

Chlormequat

References

  • Agüero CB, Riquelme C, Tizio R (1995) Embryo rescue from seedless grapevines (Vitis vinifera L.) treated with growth retardants. Vitis 34:73–76

    Google Scholar 

  • Agüero C, Vigliocco A, Abdala G, Tizio R (2000) Effect of gibberellic acid and uniconazol on embryo abortion in the stenospermocarpic grape cultivars Emperatriz and Perlon. Plant Growth Regul 30:9–16

    Article  Google Scholar 

  • Akkurt M, Tahmaz H, Veziroglu S (2019) Recent developments in seedless grapevine breeding. S Afr J Enol Vitic 40:260–265. https://doi.org/10.21548/42-2-3342

    Article  CAS  Google Scholar 

  • Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75:669–673

    Article  Google Scholar 

  • Belmonte M, Elhiti M, Waldner B, Stasolla C (2010) Depletion of cellular brassinolide decreases embryo production and disrupts the architecture of the apical meristems in Brassica napus microspore-derived embryos. J Exp Bot 61:2779–2794. https://doi.org/10.1093/jxb/erq110

    Article  CAS  Google Scholar 

  • Bennici S et al (2019) Influence of the genetic background on the performance of molecular markers linked to seedlessness in table grapes. Sci Hortic 252:316–323. https://doi.org/10.1016/j.scienta.2019.03.060

    Article  Google Scholar 

  • Bergamini C et al (2013) Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy in Vitis vinifera L. Mol Biotechnol 54:1021–1030. https://doi.org/10.1007/s12033-013-9654-8

    Article  CAS  Google Scholar 

  • Bharathy PV, Karibasappa GS (2003) Influence of pre-bloom sprays of benzyladenine on in vitro recovery of hybrid embryos from crosses of thompson seedless and 8 seeded varieties of grape (Vitis spp.). Vitis 42:199–202

    CAS  Google Scholar 

  • Bharathy PV, Karibasappa GS, Patil SG, Agrawal DC (2005) In ovulo rescue of hybrid embryos in flame seedless grapes—influence of pre-bloom sprays of benzyladenine. Sci Hortic 106:353–359. https://doi.org/10.1016/j.scienta.2005.04.002

    Article  CAS  Google Scholar 

  • Buitendijk J, H, Pinsonneaux N, Donk AC, Ramanna MS, Lammeren AAM (1995) Embryo rescue by half-ovule culture for the production of interspecific hybrids in Alstroemeria. Sci Hortic 64:65–75. https://doi.org/10.1016/0304-4238(95)00827-2

  • Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreno J, Martinez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585. https://doi.org/10.1139/g06-122

    Article  CAS  Google Scholar 

  • Cadot Y, Miñana-Castelló MT, Chevalier M (2006) Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. J Agric Food Chem 54:9206–9215. https://doi.org/10.1021/jf061326f

    Article  CAS  Google Scholar 

  • Cain DW, Emershad RL (1983) In-ovulo embryo culture and seedling development of seeded and seedless grapes (Vitis vinifera L.). Vitis 22:9–14

    Google Scholar 

  • Casanova L, Casanova R, Moret A, Agustí M (2009) The application of gibberellic acid increases berry size of "Emperatriz" seedless grape. Span J Agric Res 7:919–927

    Article  Google Scholar 

  • Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166:324–328. https://doi.org/10.1016/j.jplph.2008.06.002

    Article  CAS  Google Scholar 

  • Cheng C et al (2013) Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS ONE 8:e80044. https://doi.org/10.1371/journal.pone.0080044

    Article  CAS  Google Scholar 

  • Cheng D, Zhang G, Jiang J, Fan X, Zhang Y, Liu C (2015) Intraspecies genetic diversity of Vitis davidii. J Plant Gentic Resour 16:1141–1151

    CAS  Google Scholar 

  • Conner PJ, Gunawan G, Clark JR (2018) Characterization of the p3-VvAGL11 marker for stenospermocarpic seedlessness in Euvitis × Muscadinia grape hybrid progenies. J Am Soc Hortic Sci 143:167–172

    Article  Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38. https://doi.org/10.1186/1471-2229-8-38

    Article  CAS  Google Scholar 

  • Di Genova A et al (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14:7

    Article  Google Scholar 

  • Ebadi A, Aalifar M, Farajpour M, Moghaddam MRF (2016) Investigating the most effective factors in the embryo rescue technique for use with ‘Flame Seedless’ grapevine. J Hortic Sci Biotechnol 91:1–7

    Article  Google Scholar 

  • Emershad RL, Ramming DW (1994a) Effects of media on embryo enlargement, germination and plant development in early-ripening genotypes of Prunus grown in vitro. Plant Cell Tissue Organ Cult 37:55–59. https://doi.org/10.1007/BF00048117

    Article  Google Scholar 

  • Emershad RL, Ramming DW (1994b) Somatic embryogenesis and plant development from immature zygotic embryos of seedless grapes (Vitis vinifera L.). Plant Cell Rep 14:6–12. https://doi.org/10.1007/BF00233289

    Article  CAS  Google Scholar 

  • Emershad RL, Ramming DW, Serpe MD (1989) In ovulo embryo development and plant formation from stenospermic genotypes of Vitis vinifera. Am J Bot 76:397–402

    Article  Google Scholar 

  • Figueiredo DD, Kohler C (2018) Auxin: a molecular trigger of seed development. Gene Dev 32:479–490. https://doi.org/10.1101/gad.312546.118

    Article  CAS  Google Scholar 

  • Garcia D, Fitz Gerald JN, Berger F (2005) Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17:52–60. https://doi.org/10.1105/tpc.104.027136

    Article  CAS  Google Scholar 

  • Goldy R, Emershad R, Ramming D, Chaparro J (1988) Embryo culture as a means of introgressing seedlessness from Vitis vinifera to V. rotundifolia. HortScience 23:886–889

    Google Scholar 

  • Gomez MD, Ventimilla D, Sacristan R, Perez-Amador MA (2016) Gibberellins regulate ovule integument development by interfering with the transcription factor ATS. Plant Physiol 172:2403–2415. https://doi.org/10.1104/pp.16.01231

    Article  CAS  Google Scholar 

  • Gray DJ, Mortensen JA, Benton CM, Durham RE, Moore GA (1990) Ovule culture to obtain progeny from hybrid seedless bunch grapes. J Am Soc Hortic Sci 115:1019–1024

    Article  Google Scholar 

  • Gribaudo I, Zanetti R, Botta R, Vallania R, Eynard I (1993) In ovulo embryo culture of stenospermocarpic grapes. Vitis 32:9–14

    CAS  Google Scholar 

  • Guo H, Wang Y, Zhang J, Pan X, Tang D, Tian L (2005) Development of resistant and seedless grape germplasms by emnryo rescue and marker-assisted. Acta Bot Boreal Occident Sin 25:2395–2401

    CAS  Google Scholar 

  • Guo XW et al (2015) Influencing factors of embryo rescue in seedless grape. Pak J Bot 47:669–673

    CAS  Google Scholar 

  • He P, Wang Y, Wang G, Ren Z, He C (1991) The studies on the disease-resistance of Chinese wild Vitis species. Sci Agric Sin 24:50–56

    Google Scholar 

  • Ji W, Wang Y (2013) Breeding for seedless grapes using Chinese wild Vitis spp. II. In vitro embryo rescue and plant development. J Sci Food Agric 93:3870–3875. https://doi.org/10.1002/jsfa.6342

    Article  CAS  Google Scholar 

  • Kräuter R, Steinmetz A, Friedt W (1991) Efficient interspecific hybridization in the genus Helianthus via “embryo rescue” and characterization of the hybrids. Theor Appl Genet 82:521–525. https://doi.org/10.1007/bf00588609

    Article  Google Scholar 

  • Lahogue F, This P, Bouquet A (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959. https://doi.org/10.1007/s001220050976

    Article  CAS  Google Scholar 

  • Lavee S (1960) Effect of gibberellic acid on seeded grapes. Nature 185:395

    Article  CAS  Google Scholar 

  • Li G, Wang Y, Tang D, Wang X, Luo Q (2001) The studies on embryo rescue techniques of 'Thompson Seedless' grape. Acta Bot Boreal Occident Sin 21:432–436. https://doi.org/10.3321/j.issn:1000-4025.2001.03.007

    Article  CAS  Google Scholar 

  • Li G, Ji W, Wang G, Zhang J, Wang Y (2014) An improved embryo-rescue protocol for hybrid progeny from seedless Vitis vinifera grapes × wild Chinese Vitis species. Vitro Cell Dev Biol-Plant 50:110–120. https://doi.org/10.1007/s11627-013-9543-7

    Article  CAS  Google Scholar 

  • Li Z, Li T, Wang Y, Xu Y (2015) Breeding new seedless grapes using in ovulo embryo rescue and marker-assisted selection. Vitro Cell Dev Biol Plant 51:241–248. https://doi.org/10.1007/s11627-015-9677-x

    Article  CAS  Google Scholar 

  • Li T, Li Z, Yin X, Guo Y, Wang Y, Xu Y (2018) Improved in vitro Vitis vinifera L. embryo development of F1 progeny of ‘Delight’ × ‘Ruby seedless’ using putrescine and marker-assisted selection. Vitro Cell Dev Biol-Plant 54:291–301. https://doi.org/10.1007/s11627-018-9895-0

    Article  Google Scholar 

  • Li N, Xu R, Li Y (2019a) Molecular networks of seed size control in plants. Annu Rev Plant Biol 70:435–463. https://doi.org/10.1146/annurev-arplant-050718-095851

    Article  CAS  Google Scholar 

  • Li S, Li Z, Zhao Y, Zhao J, Luo Q, Wang Y (2019b) New disease-resistant, seedless grapes are developed using embryo rescue and molecular markers. Biotech. https://doi.org/10.1007/s13205-019-1993-0

    Article  Google Scholar 

  • Liu SM, Sykes SR, Clingeleffer PR (2003) Improved in ovulo embryo culture for stenospermocarpic grapes (Vitis vinifera L.). Aust J Agr Res 54:869–876. https://doi.org/10.1071/Ar03053

    Article  CAS  Google Scholar 

  • Liu Q, Zhang J, Wang Y, Yu D, Xia H (2016) Breeding for cold-resistant, seedless grapes from Chinese wild Vitis amurensis using embryo rescue. New Zeal J Crop Hortic 44:136–151. https://doi.org/10.1080/01140671.2016.1153489

    Article  CAS  Google Scholar 

  • Malabarba J et al (2017) The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine. J Exp Bot 68:1493–1506. https://doi.org/10.1093/jxb/erx025

    Article  CAS  Google Scholar 

  • Malabarba J, Buffon V, Mariath JEA, Maraschin FS, Margis-Pinheiro M, Pasquali G, Revers LF (2018) Manipulation of VviAGL11 expression changes the seed content in grapevine (Vitis vinifera L.). Plant Sci 269:126–135. https://doi.org/10.1016/j.plantsci.2018.01.013

    Article  CAS  Google Scholar 

  • Mejía N, Hinrichsen P (2003) A new, highly assertive scar marker potentially useful to assist selection for seedlessness in table grape breeding. Acta Hortic 603:559–564. https://doi.org/10.17660/ActaHortic.2003.603.74

    Article  Google Scholar 

  • Mejía N et al (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedless in grapevine. BMC Plant Biol 11:57. https://doi.org/10.1186/1471-2229-11-57

    Article  CAS  Google Scholar 

  • Notsuka K, Tsuru T, Shiraishi M (2001) Seedless-seedless grape hybridization via In-ovlue embryo culture. J Jpn Soc Hort Sci 70:7–15. https://doi.org/10.2503/jjshs.70.7

    Article  Google Scholar 

  • Pellerone FI, Kj E, Thomas MR (2001) Grapevine microsatellite repeats: isolation, characterisation and use for genotyping of grape germplasm from Southern Italy. Vitis 40:179–186. https://doi.org/10.2503/jjshs.70.7

    Article  CAS  Google Scholar 

  • Pérez FJ, Viani C, Retamales J (2000) Bioactive gibberellins in seeded and seedless grapes: identification and changes in content during berry development. Am J Enol Vitic 51:315–318

    Google Scholar 

  • Pommer CV, Ramming DW, Emershad RL (1995) Influence of grape genotype, ripening season, seed trace size, and culture date on in ovule embryo development and plant formation. Bragantia 54:237–249. https://doi.org/10.1590/S0006-87051995000200002

    Article  Google Scholar 

  • Ramming DW (1990) Hybridization of seedless grapes. Vitis 29:439–444

    Google Scholar 

  • Ramming DW, Emershad RL, Tarailn R (2000) A stenospermocarpic, seedless Vitis vinifera × Vitis rotundifolia hybrid developed by embryo rescue. HortScience 35:732–734

    Article  Google Scholar 

  • Roichev V, Yancheva SD, Petkova S (2007) Embryogenesis in seedles grapes and hybrid combinations of (Vitis Vinifera L.) - Somatic embryogenesis in liquid culture part I. Biotechnol Biotec Eq 21:43–48

    Article  Google Scholar 

  • Royo C et al (2018) The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiol 177:1234–1253. https://doi.org/10.1104/pp.18.00259

    Article  CAS  Google Scholar 

  • Singh N, V, Singh S, K, Singh AK, (2011) Standardization of embryo rescue technique and bio-hardening of grape hybrids (Vitis vinifera L.) using Arbuscular mycorrhizal fungi (AMF) under sub-tropical conditions. Vitis 50:115–118

    Google Scholar 

  • Spiegel-Roy P, Sahar N, Baron I (1990) Seedless × seedless grape progeny: technique, results and perspectives. Vitis 432–438

  • Stout AB (1936) Seedlessness in grape. N Y State Agric Expt Stat Tech Bull 238:1–68

    Google Scholar 

  • Striem MJ, Spiegelroy P, Baron I, Sahar N (1992) The degrees of development of the seed-coat and the endosperm as separate subtraits of stenospermocarpic seedlessness in grapes. Vitis 31:149–155

    Google Scholar 

  • Talón M, Hedden P, Primo-Millo E (1990) Gibberellins in citrus sinensis: a comparison between seeded and seedless varieties. J Plant Growth Regul 9:201–206

    Article  Google Scholar 

  • Tang D, Wang Y, Cai J, Zhao R (2009) Effects of exogenous application of plant growth regulators on the development of ovule and subsequent embryo rescue of stenospermic grape (Vitis vinifera L.). Sci Hortic 120:51–57. https://doi.org/10.1016/j.scienta.2008.09.018

    Article  CAS  Google Scholar 

  • Tian L, Wang Y (2008) Seedless grape breeding for disease resistance by using embryo rescue. Vitis 47:15–19

    CAS  Google Scholar 

  • Tian L, Wang Y, Niu L, Tang D (2008) Breeding of disease-resistant seedless grapes using Chinese wild Vitis spp. I. In vitro embryo rescue and plant development. Sci Hortic 117:136–141. https://doi.org/10.1016/j.scienta.2008.03.024

    Article  Google Scholar 

  • Tsolova V, Atanassov A (1994) Induction of polyembryony and secondary embryogenesis in culture for embryo rescue of stenospermocarpic genotypes of Vitis vinifera L. Vitis 33:55–56

    Google Scholar 

  • Valdez JG (2005) Immature embryo rescue of grapevine (Vitis vinifera L.) after an extended period of seed trace culture. Vitis 44:17–23

    Google Scholar 

  • Valdez JG, Ulanovsky SM (1997) In vitro germination of stenospermic seeds from reciprocal crosses (Vitis vinifera L.) applying different techniques. Vitis 36:105–107

    Google Scholar 

  • Wang Y (1997) Analysis of sequencing the RAPD marker linked to seedless genes in grapes. J Northwest Sci-Tech Univ Agri and For (Nat Sci Ed) 25:8–12

    CAS  Google Scholar 

  • Wang Y, Lamikanra O (2002) Application and synthesis on the DNA probe for detecting seedless genes in grapevine. J Northwest Sci-Tech Univ Agri and For (Nat Sci Ed) 30:42–46

    CAS  Google Scholar 

  • Wang Y, Liu Y, He P, Lamikanra O, Lu J (1998) Resistance of Chinese Vitis species to Elsinoë ampelina (de Bary) shear. HortScience 33:123–126. https://doi.org/10.21273/Hortsci.33.1.123

    Article  Google Scholar 

  • Wang L et al (2016) Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size. BMC Genom 17:898. https://doi.org/10.1186/s12864-016-3193-1

    Article  CAS  Google Scholar 

  • Yancheva S, Roichev V (2007a) Embryogenesis in Seedles Grapes and Hybrid Combinations of (Vitis Vinifera L.). Biotechnol Biotechnol Equip 21:161–165. https://doi.org/10.1080/13102818.2007.10817437

    Article  CAS  Google Scholar 

  • Yancheva S, Roichev V (2007b) Embryogenesis in seedless grapes and hybrid combinations of (Vitis Vinifera L.) somatic embryogenesis on solid culture in vitro-Part II. Biotechnol Biotechnol Equip 21:161–165

    Article  CAS  Google Scholar 

  • Zhang J, Wang Y, Zhou B, Xu W, Zhang Y (2008a) Cloning and sequence analysis of RAPD markers linked to the resistant powdery mildew genes in Chinese wild Vitis. J Agr Biotechnol 16:481–485

    CAS  Google Scholar 

  • Zhang Y, Zhang J, Wang Y (2008b) Screening the RAPD markers linked to the gene resistant to downy mildew in Chinese wild species of Vitis. J Fruit Sci 25:816–820

    CAS  Google Scholar 

  • Zhao H, Ju Y, Jiang J, Min Z, Fang Y, Liu C (2019) Downy mildew resistance identification and SSR molecular marker screening of different grape germplasm resources. Sci Hortic 252:212–221. https://doi.org/10.1016/j.scienta.2019.03.025

    Article  CAS  Google Scholar 

  • Zhu P, Gu B, Li P, Shu X, Zhang X, Zhang J (2020) New cold-resistant, seedless grapes developed using embryo rescue and marker-assisted selection. Plant Cell Tissue and Organ Cult 140:551–562. https://doi.org/10.1007/s11240-019-01751-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the earmarked fund for China Agriculture Research Systems for the grape industry (Grant No. CARS-29-yc-3). The authors specifically thank Dr. Weirong Xu from Ningxia University for useful comments and language editing, which have improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YW designed this study. SL, KL, SY, SJ, SC, YF and FS performed experiments. QL prepared materials, SL and KL performed data collection and analysis, SL wrote the manuscript, and YW revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuejin Wang.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Communicated by Klaus Eimert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, K., Yu, S. et al. The process of embryo abortion of stenospermocarpic grape and it develops into plantlet in vitro using embryo rescue. Plant Cell Tiss Organ Cult 143, 389–409 (2020). https://doi.org/10.1007/s11240-020-01926-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01926-y

Keywords

Navigation