Skip to main content
Log in

Enhanced detection limits for radiokrypton analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We present a method for improving detection limits of Atom Trap Trace Analysis for the krypton radioisotopes 85Kr and 81Kr. For the case of 85Kr this work demonstrates that systematic use of isotopically depleted gas for calibration and extended conditioning of the instrument results in a detection limit of 900 85Kr atoms per 11 µl of Kr gas, equivalent to a 85Kr/Kr isotopic abundance of 3 × 10–15. This improvement of roughly two orders of magnitude over previously reported limits will help to expand the reach of radiokrypton dating towards longer age ranges where most of the radioisotopes have decayed. Additionally, the method offers an opportunity to investigate radiokrypton production via spontaneous fission within naturally occurring minerals to understand potential underground production of these isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lu Z-T, Schlosser P, Smethie WM Jr, Sturchio NC, Fischer TP, Kennedy BM, Purtschert R, Severinghaus JP, Solomon DK, Tanhua T, Yokochi R (2014) Tracer applications of noble gas radionuclides in the geosciences. Ear Sci Rev. https://doi.org/10.1016/j.earscirev.2013.09.002

    Article  Google Scholar 

  2. Baglin CM (2008) Nuclear data sheets for A = 81. Nucl Data Sheets. https://doi.org/10.1016/j.nds.2008.09.001

    Article  Google Scholar 

  3. Singh B, Chen J (2014) Nuclear data sheets for A = 85. Nucl Data Sheet 116:36

    Article  Google Scholar 

  4. Gerber C, Vaikmäe R, Aeschbach W, Babre A, Jiang W, Leuenberger M, Lu Z-T, Mokrik R, Müller P, Raidla V, Saks T, Waber HN, Weissbach T, Zappala JC, Purtschert R (2017) Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochim et Cosmochim Acta 205:187–210

    Article  CAS  Google Scholar 

  5. Buizert C, Baggenstos D, Jiang W, Purtschert R, Petrenko VV, Lu Z-T, Müller P, Kuhl T, Lee J, Severinghaus JP, Brook EJ (2014) Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor glacier. Antarctica PNAS 111:6876–6881

    Article  CAS  PubMed  Google Scholar 

  6. Yokochi R, Ram R, Zappala JC, Jiang W, Adar E, Bernier R, Burg A, Dayan U, Lu Z-T, Mueller P, Purtschert R, Yechieli Y (2019) Radiokrypton unveils dual moisture sources of a deep desert aquifer. PNAS 116:16222–16227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yechieli Y, Yokochi R, Zilberbrand M, Lu ZT, Purtschert R, Sueltenfuss J, Jiang W, Zappala J, Mueller P, Bernier R, Avrahamov N, Adar E, Talhami F, Lifshitz Y, Burg A (2018) Recent seawater intrusion into deep aquifer determined by the radioactive noble-gas isotopes 81Kr and 39Ar. ESPL 507:21–29

    Google Scholar 

  8. Aggarwal PK, Matsumoto T, Sturchio NC, Chang HK, Gastmans D, Araguas-Araguas LJ, Jiang W, Lu Z-T, Mueller P, Yokochi R, Purtschert R, Torgersen T (2014) Continental degassing of 4He by surficial discharge of deep groundwater. Nat Geo 8:35–39

    Article  Google Scholar 

  9. Yokochi R, Bernier R, Purtschert R, Zappala JC, Yechieli Y, Adar E, Jiang W, Lu Z-T, Mueller P, Olack G, Ram R (2018) Field degassing as a new sampling method for 14C analyses in old groundwater. Radiocarbon. https://doi.org/10.1017/RDC.2017.64

    Article  Google Scholar 

  10. Matsumoto T, Zouari K, Trabelsi R, Hillegonds D, Jiang W, Lu Z-T, Mueller P, Zappala JC, Araguás LJA, Romeo N, Agoun A (2020) Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating. EPSL. https://doi.org/10.1016/j.epsl.2020.116120

    Article  Google Scholar 

  11. Chen CY, Li YM, Bailey K, O’Connor TP, Young L, Lu Z-T (1999) Ultrasensitive isotope trace analysis with a magneto-optical trap. Science 286:1139–1141

    Article  CAS  PubMed  Google Scholar 

  12. Du X, Purtschert R, Bailey K, Lehmann BE, Lorenzo R, Lu Z-T, Mueller P, O’Connor TP, Sturchio NC, Young L (2003) A new method of measuring 81Kr and 85Kr abundances in environmental samples. Geophys Res Lett 30:2068–2071

    Article  Google Scholar 

  13. Jiang W, Bailey K, Lu ZT, Mueller P, O’Connor TP, Cheng CF, Hu SM, Purtschert R, Sturchio NC, Sun YR, Williams WD, Yang GM (2012) An atom counter for measuring 81Kr and 85Kr in environmental samples. Geochim Cosmochi Acta 91:1–6

    Article  CAS  Google Scholar 

  14. Jiang W, Bailey K, Lu ZT, Mueller P, O’Connor TP, Purtschert R (2014) Ion current as a precise measure of the loading rate of a magneto-optical trap. Opt Lett 39:409–412

    Article  CAS  PubMed  Google Scholar 

  15. Purtschert R, Onstott T, Lu ZT, Jiang W, Mueller P, Zappala J, Yokochi R, Van-Heerden E, Lau M, Kieft T, Brennwald M, Cason E (2017) Goldschmidt Abstracts 2017, 3235

  16. Ding Y, Hu S-M, Bailey K, Davis AM, Dunford RW, Lu Z-T, O’Connor TP, Young L (2007) Thermal beam of metastable krypton atoms produced by optical excitation. Rev Sci Instrum. https://doi.org/10.1063/1.2437193

    Article  PubMed  Google Scholar 

  17. Dakka MA, Tsiminis G, Glover RD, Perrella C, Moffatt J, Spooner NA, Sang RT, Light PS, Luiten AN (2018) Laser-based metastable Krypton generation. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.121.093201

    Article  PubMed  Google Scholar 

  18. Zappala JC, Bailey K, Mueller P, O’Connor TP, Purtschert R (2017) Rapid processing of 85Kr/Kr ratios using Atom Trap Trace Analysis. Water Resour Res. https://doi.org/10.1002/2016WR020082

    Article  Google Scholar 

  19. Kuzminov VV, Pomansky AA (1980) New measurement of the 81Kr atmospheric abundance. Radiocarbon 22:311–317

    Article  CAS  Google Scholar 

  20. Feldman G, Cousins RD (1998) Unified approach to the classical statistical analysis of small signals. Phys Rev D 57:3873–3889

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Department of Energy, Office of Science under contract DE-AC02-06CH11357. The authors wish to thank Roland Purtschert for providing LLC standards. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jake C. Zappala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zappala, J.C., McLain, D., Mueller, P. et al. Enhanced detection limits for radiokrypton analysis. J Radioanal Nucl Chem 326, 1075–1079 (2020). https://doi.org/10.1007/s10967-020-07355-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07355-7

Keywords

Navigation