Skip to main content
Log in

Structural evolution, electronic and physicochemical properties of tin ozonide nanoclusters: a density functional theory perspective

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A systematic conceptual study of the properties of tin oxide nanoclusters SnnOm (n = 1–6; 2n+1 ≤ m ≤ 4n+2) with ozonide ion or mixed ozonide with molecular O20, oxide (O2−), peroxide (O) or superoxide (O2) was investigated using the ab initio density functional theory perspective. Bader charge calculations revealed the oxidation state of Sn and established formation of terminal oxide moiety in the nanoclusters. The stability investigation was carried out by calculations of the binding energy (BE) per atom, the second difference total energy (Δ2E(m)) and the gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) while adsorption energy per O2 and O3 was investigated. Exploring the variation of the reactivity parameters and reaction energy with sizes revealed size dependence on physicochemical properties of the nanoclusters. Magnetism studies show the contribution of O2, O, O2 and O3 to the magnetic moment of the nanoclusters.

Graphical abstract

The graphic shows the possibility of an ozone sensor with tin oxide nanocluster to form tin ozonide with a respective calculated adsorption energy. The ozonide formed can be applied as an oxygen-rich catalyst in oxygen-required oxidation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Argazzi R, Iha NYM, Zabri H, Odobel F, Bignozzi CA (2004) Design of molecular dyes for application in photo-electrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coord Chem Rev 248:1299–1316

    Article  CAS  Google Scholar 

  • Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic and kinetics effects. Rev Mod Phys 77:371–423

    Article  CAS  Google Scholar 

  • Batakliev T, Georgiev V, Anachkov M, Rakovsky S, Zaikov GE (2014) Ozone decomposition. Interdiscip Toxicol 7:47–59

    Article  Google Scholar 

  • Batzill M, Diebold U (2007) Surface studies of gas sensing metal oxides. Phys Chem Chem Phys 9:2307–2318

    Article  CAS  Google Scholar 

  • Blöchl PE (1994) Projector augmented –wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  • Bulanin KM, Lavalley JC, Tsyganenko AA (1997) Infra-red study of ozone adsorption on CaO. J Phys Chem B 101:2917–12922

    Article  CAS  Google Scholar 

  • Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568:28–40

    Article  CAS  Google Scholar 

  • Cotton FA (2009) Progress in inorganic chemistry. Wiley, New York

  • Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50

    Article  CAS  Google Scholar 

  • Gong Y, Zhou M (2009) Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem Rev 109:6765–6808

    Article  CAS  Google Scholar 

  • Jansen M, Nuss H (2007) Ionic ozonides. Z Anorg Allg Chem 633:1307–1315

    Article  CAS  Google Scholar 

  • Jena P, Castleman AW Jr (2006) Clusters: a bridge across the disciplines of physics and chemistry. Pnas 103:10560–10569

    Article  CAS  Google Scholar 

  • Korotcenkov G, Brinzari V, Cho BK (2018) In2O3- and SnO2- based ozone sensors: design and characterization. Critic Rev Solid State Mater Sci 43:83–132

    Article  CAS  Google Scholar 

  • Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  • Lepeshkin S, Baturin V, Thkhonov E, Matsko N, Uspenskii Y, Naumova A, Feya O, Shoonen MA, Oganov AR (2016) Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface. Nanoscale 8:18616–18620

    Article  CAS  Google Scholar 

  • Martha S, Sahoo PC, Parida KM (2015) An overview on visible light responsive metal oxide based photocatalysts for hydrogen energy production. RSC Adv 5:61535–61553

    Article  CAS  Google Scholar 

  • Mei D, Yuan X, Ma Z, Wei P, Yu Z, Yang J, Ma Z-F (2016) A SnO2-based cathode catalyst for lithium-air batteries. ACS Appl Mater Interfaces 8:12804–12811

    Article  CAS  Google Scholar 

  • Munter R (2001) Advanced oxidation processes-current status and prospects. Proc Estonian Acad Sci Chem 50:59–80

    CAS  Google Scholar 

  • Nuss H, Jansen M (2006) Cs5([12]crown-4)2(O3)5: a supramolecular compound containing the confined ozonide partial structure 1͚{Cs8(O3)10}2−. Angew Chem 118:8137–8140

    Article  Google Scholar 

  • Nuss H, Jansen M (2012) Cs3(O3)2(O2).NH3: the first mixed alkali metal ozonide superoxide. Z Anorg Allg Chem 638:501–504

    Article  CAS  Google Scholar 

  • Parr RG, Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  • Pearson RG (1993) The principle of maximum hardness. Acc Chem Rev 26:250–255

    Article  CAS  Google Scholar 

  • Pedersen A, Luisier M (2014) Lithiation of tin oxide: a computational study. ACS Appl Mater Interfaces 6:22257–22263

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  • Uzunova EL (2011) Electronic structure of trioxide, oxoperoxide, oxo-superoxide and ozonide clusters of the 3d elements: density functional theory study. J Phys Chem A 115:1320–1330

    Article  CAS  Google Scholar 

  • Venkataramanan NS, Suvitha A, Note R, Kawazoe Y (2009) Structures of small YnAlm clusters (n+m ⩽ 6): a DFT study. J. Mol. Struc.: THEOCHEM. 902:72–78

  • Vienna Ab initio Simulation Package (VASP) (1999) Technische Univesita ‘t Wien, Vienna, Austria

  • Wang Z-L, Xu D, Xu J-J, Zhang X-B (2014) Oxygen electrocatalysts in metal-air batteries: from aqueous to non-aqueous electrolytes. Chem Soc Rev 43:7746–7786

    Article  CAS  Google Scholar 

  • Wang J, Wang G, Yang C, Yang S, Huang Q (2015) Catalytic ozonation of organic compounds in water over the catalyst of RuO2/ZrO2-CeO2. Front Environ Sci Eng 9:615–624

    Article  CAS  Google Scholar 

  • Wei C-H, Zhang F, Hu Y, Feng C, Wu H (2017) Ozonation in water treatment: the generation, basic properties of ozone and its practical application. Rev Chem Eng 33(1):49–89

    Article  CAS  Google Scholar 

  • Zhuravlev YN, Kravchenko NG, Obolonskaya OS (2010) The electronic structure of alkali metal oxides. Rus J Phys Chem B 4:20–28

    Article  Google Scholar 

Download references

Acknowledgements

Akiode O.K. thanks The World Academy of Science and Council of Scientific and Industrial Research (CSIR-TWAS) for the opportunity of research fellowship granted to him. The authors thank CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India, for the provision of facilities to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mopelola Abidemi Idowu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Figures S1–S6 for lowest energy structures and some low-lying isomers, Figure S7 for most stable structures and Figure S8 for charge differences in selected Sn6Om nanoclusters. (DOCX 1601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akiode, O.K., Murugan, P., Adeogun, A.I. et al. Structural evolution, electronic and physicochemical properties of tin ozonide nanoclusters: a density functional theory perspective. J Nanopart Res 22, 292 (2020). https://doi.org/10.1007/s11051-020-05021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05021-3

Keywords

Navigation