Skip to main content

Advertisement

Log in

Extending the visible-light photocatalytic CO2 reduction activity of K2Ti6O13 with the MxOy (M = Co, Ni and Cu) incorporation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co3O4, NiO, and CuO-K2Ti6O13 composites were successfully grown in-situ by using an ultrasound-assisted sol–gel method. As a result of the synthesis method, the introduction of the metallic cations into the crystalline structure substituting Ti4+ or K+ cations depending on the case was achieved. For instance, Co2+ cations were introduced instead of Ti4+ cations, while Ni2+ and Cu2+ were introduced on both sides. The metal-cation introduction between the tunnels favored the growth of K-poor phases as impurities, especially in the CuO loaded K2Ti6O13 samples. The presence of these metallic oxides modified the structural and optical properties by forming oxygen vacancies in some samples, favoring the photocatalytic CO2 reduction in aqueous media to low-weight compounds, such as formaldehyde, methanol, methane, and hydrogen, under visible-light irradiation. Enhanced selectivity of the evolved product, as a result of the metallic cation nature and the formed impurities, was observed. For instance, Co3O4 favored the evolution of formaldehyde in the most efficient sample (1 Co-KTO; 453.2 μmol g−1) as a result of the low quantity of impurities present in samples; NiO favored the hydrogen evolution reaction (1 Ni-KTO; 201 μmol g−1), possibly due to the photo-reforming of the organic compounds; and CuO enhanced the methanol and hydrogen production (159.7 and 282 μmol g−1, respectively in 1 Cu-KTO) due to the formation of oxygen vacancies as active sites for the photocatalytic process and reducing the photo-generated charge recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

lettorresg@yahoo.com.

References

  1. H.B. Gray, Nat. Chem. 1, 7 (2009)

    CAS  Google Scholar 

  2. A.J. Cowan, J.R. Durrant, Chem. Soc. Rev. 42, 2281–2293 (2013)

    CAS  Google Scholar 

  3. X. Xin, T. Xu, L. Wang, C. Wang, Sci. Rep. 6, 23684 (2016)

    CAS  Google Scholar 

  4. N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, J. CO2 Util. 26, 98–122 (2018)

    CAS  Google Scholar 

  5. X. Chen, F. Jin, Front. Energy 13, 207–220 (2019)

    Google Scholar 

  6. X. Liu, L. Ye, S. Liu, Y. Li, X. Ji, Sci. Rep. 6, 38474 (2016)

    CAS  Google Scholar 

  7. F. Zhang, Y.-H. Li, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Appl. Catal. B Environ. 268, 118380 (2019)

    Google Scholar 

  8. A.E. Nogueira, J.A. Oliveira, G.T.S.T. da Silva, Sci. Rep. 9, 1316 (2019)

    Google Scholar 

  9. M. Akatsuka, Y. Kawaguchi, R. Itoh, A. Ozawa, M. Yamamoto, T. Tanabe, T. Yoshida, Appl. Catal. B Environ. 262, 118247 (2020)

    CAS  Google Scholar 

  10. K. Teramura, H. Tsuneoka, T. Shishido, T. Tanaka, Chem. Phys. Lett. 467, 191–194 (2008). https://doi.org/10.1016/j.cplett.2008.10.079

    Article  CAS  Google Scholar 

  11. Y. Kohno, H. Ishikawa, T. Tanaka, T. Funabiki, S. Yoshida, Phys. Chem. Chem. Phys. 3, 1108–1113 (2001)

    CAS  Google Scholar 

  12. Y. Matsumoto, M. Obata, J. Hombo, J. Phys. Chem. 98, 2950–2951 (1994)

    CAS  Google Scholar 

  13. Q. Liu, D. Wu, Y. Zhou, H.B. Su, R. Wang, C.F. Zhang, S.C. Yan, M. Xiao, Z.G. Zou, A.C.S. Appl, Mater. Interfaces. 6(4), 2356–2361 (2014)

    CAS  Google Scholar 

  14. S. Wang, Y. Hou, X. Wang, A.C.S. Appl, Mater. Interfaces 7(7), 4327–4335 (2015)

    CAS  Google Scholar 

  15. W. Dai, J. Yu, Y. Deng, X. Hu, T. Wang, X. Luo, Appl. Surf. Sci. 403, 230–239 (2017)

    CAS  Google Scholar 

  16. Z. Huang, K. Teramura, S. Hosokawa, T. Tanaka, Appl. Catal. B Environ. 199, 272–281 (2016)

    CAS  Google Scholar 

  17. Z. Huang, K. Teramura, H. Asakura, S. Hosokawa, T. Tanaka, Catal. Today. 300, 173–182 (2018)

    CAS  Google Scholar 

  18. K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, J. Am. Chem. Soc. 133, 20863–20868 (2011)

    CAS  Google Scholar 

  19. B.-J. Liu, T. Torimoto, H. Yoneyama, J. Photochem. Photobiol. A Chem. 113, 93–97 (1998)

    CAS  Google Scholar 

  20. J. Chen, S. Qin, G. Song, T. Xiang, F. Xin, X. Yin, Dalt. Trans. 42, 15133–15138 (2013)

    CAS  Google Scholar 

  21. X. Li, J. Chen, H. Li, J. Li, Y. Xu, Y. Liu, J. Zhou, J. Nat. Gas Chem. 20, 413–417 (2011)

    CAS  Google Scholar 

  22. C. Wang, Y. Zhang, J. Li, P. Wang, J. Mol. Struct. 1083, 127–136 (2015)

    CAS  Google Scholar 

  23. R. Li, W. Zhang, K. Zhou, Adv. Mater. 30, 1705512 (2018)

    Google Scholar 

  24. Y. Chen, D. Wang, X. Deng, Z. Li, Catal. Sci. Technol. 7, 4893–4904 (2017)

    CAS  Google Scholar 

  25. X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 45, 2603–2636 (2016)

    CAS  Google Scholar 

  26. S. Qin, F. Xin, Y. Liu, X. Yin, W. Ma, J. Colloid Interface Sci. 356, 257–261 (2011)

    CAS  Google Scholar 

  27. P.-Q. Wang, Y. Bai, P.-Y. Luo, J.-Y. Liu, Catal. Commun. 38, 82–85 (2013)

    CAS  Google Scholar 

  28. M.-Q. Yang, Y.-J. Xu, Nanoscale Horizons 1, 185–200 (2016)

    CAS  Google Scholar 

  29. M.M. Kandy, Sustain Energy Fuels. 4, 469–484 (2020)

    CAS  Google Scholar 

  30. M. Tahir, N.S. Amin, Energy Convers. Manage 76, 194–214 (2013)

    CAS  Google Scholar 

  31. M. Edelmannová, K. Lin, C.S. Wu, I. Troppová, Č. Libor, Appl. Surf. Sci. 454, 313–318 (2018)

    Google Scholar 

  32. B. Fang, Y. Xing, A. Bonakdarpour, S. Zhang, D.P. Wilkinson, CS Sustainable Chem. Eng. 3(10), 2381–2388 (2015)

    CAS  Google Scholar 

  33. P. Ponce-Peña, M. Poisot, A. Rodríguez-Pulido, M.A. González-Lozano, Materials 12, 4132 (2019)

    Google Scholar 

  34. A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, Int. J. Hydrogen Energy. 42, 14547–14559 (2017)

    CAS  Google Scholar 

  35. L.F. Garay-Rodríguez, L.M. Torres-Martínez, E. Moctezuma, J. Energy Chem. 37, 18–28 (2019)

    Google Scholar 

  36. L.F. Garay-Rodríguez, L.M. Torres-Martínez, J. Sol-Gel Sci. Technol. 93, 428–437 (2020)

    Google Scholar 

  37. X. Zhu, A. Yamamoto, S. Imai, A. Tanaka, H. Kominami, H. Yoshida, Chem. Commun. 55, 13514–13517 (2019)

    CAS  Google Scholar 

  38. X. Zhu, A. Yamamoto, S. Imai, A. Tanaka, H. Kominami, Appl. Catal. B 274, 119085 (2020)

    CAS  Google Scholar 

  39. G. Guan, T. Kida, T. Harada, M. Isayama, A. Yoshida, Appl. Catal. A 249, 11–18 (2003)

    CAS  Google Scholar 

  40. Y. Orooji, R. Mohassel, O. Amiri, A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 835, 155240 (2020)

    CAS  Google Scholar 

  41. M. Ferrari, L. Lutterotti, J. Appl. Phys. 76, 7246–7255 (1994)

    CAS  Google Scholar 

  42. J. Zhao, J. Zhao, J. Chen, X. Wang, Z. Han, Y. Li, Ceram. Int. 40, 3379–3388 (2014)

    CAS  Google Scholar 

  43. J.R. Martínez, S. Palomares-Sánchez, G. Ortega-Zarzosa, F. Ruiz, Y. Chumakov, Mater. Lett. 60, 3526–3529 (2006)

    Google Scholar 

  44. S. Sehati, M.H. Entezari, Ultrason. Sonochem. 32, 348–356 (2016)

    CAS  Google Scholar 

  45. S. Sehati, M.H. Entezari, Appl. Surf. Sci. 399, 732–741 (2017)

    CAS  Google Scholar 

  46. M. Siddiqui, V. Chandel, M. Shariq, A. Azam, Mater. Sci. 31, 555–560 (2013)

    CAS  Google Scholar 

  47. S.V. Vikram, D.M. Phase, V.S. Chandel, J. Alloys Compd. 489, 700–707 (2010)

    CAS  Google Scholar 

  48. D. Guerrero-Arenque, P. Acevedo-Peña, D. Ramírez-Ortega, H.A. Calderón, R. Gómez, Int. J. Hydrogen Energy 42, 9744–9753 (2017)

    Google Scholar 

  49. J. Yu, Y. Hai, M. Jaroniec, J. Colloid Interface Sci. 357, 223–228 (2011)

    CAS  Google Scholar 

  50. H. Yoshida, M. Takeuchi, M. Sato, L. Zhang, T. Teshima, M.G. Chaskar, Catal. Today. 232, 158–164 (2014)

    CAS  Google Scholar 

  51. W. Cui, S. Ma, L. Liu, J. Hu, Y. Liang, J. Mol. Catal. A Chem. 359, 35–41 (2012)

    CAS  Google Scholar 

  52. M. Kim, H. Woo, Mater. Lett. 134, 229–232 (2014)

    CAS  Google Scholar 

  53. S. Rakshit, S. Ghosh, S. Chall, RSC Adv. 3, 19348–19356 (2013)

    CAS  Google Scholar 

  54. P. Bose, S. Ghosh, C. Glass, S. Basak, C. Glass, M. Naskar, C. Glass, J. Asian Ceram. Soc. 4, 1–5 (2016)

    Google Scholar 

  55. Y. Zhai, Y. Ji, G. Wang, Y. Zhu, H. Liu, Z. Zhong, F. Su, RSC Adv. 5, 73011–73019 (2015)

    CAS  Google Scholar 

  56. L. Hu, Y. Huang, F. Zhang, Q. Chen, Nanoscale 5, 4186–4190 (2013)

    CAS  Google Scholar 

  57. A.R. Selvaraj, R. Rajendiran, D. Chinnadurai, G. RajendraKumar, H.J. Kim, K. Senthil, K. Prabakar, Electrochim. Acta 283, 1679–1688 (2018)

    CAS  Google Scholar 

  58. J.-H. Xing, Z.-B. Xia, J.-F. Hu, Y.-H. Zhang, L. Zhong, J. Electrochem. Soc. 160(6), C239–C246 (2013)

    CAS  Google Scholar 

  59. B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Sci. Rep. 6, 32355 (2016)

    CAS  Google Scholar 

  60. Y. Xu, J. Mo, Q. Liu, X. Wang, S. Ding, Catal. Sci. Technol. 10, 2040–2046 (2020)

    CAS  Google Scholar 

  61. L.F. Garay-rodríguez, S. Murcia, T. Andreu, E. Moctezuma, Catalysts 9, 285 (2019)

    Google Scholar 

  62. P. Jiang, D. Prendergast, F. Borondics, S. Porsgaard, L. Giovanetti, E. Pach, J. Newberg, H. Bluhm, F. Besenbacher, M. Salmeron, J. Chem. Phys. 138, 024704 (2013)

    Google Scholar 

  63. R. Bhargava, S. Khan, N. Ahmad, M.M.N. Ansari, AIP Conf. Proc. 1952, 30034 (2018). https://doi.org/10.1063/1.5032369

    Article  CAS  Google Scholar 

  64. C. Khurana, O.P.P. Bhupendra, B. Chudasama, J. Sol-Gel Sci. Technol. 75, 424–435 (2015)

    CAS  Google Scholar 

  65. A. Kubacka, M.J. Muñoz-Batista, M. Fernández-García, S. Obregón, G. Colón, Appl. Catal. B Environ. 163, 214–222 (2015)

    CAS  Google Scholar 

  66. Y. Liang, S. Lin, L. Liu, J. Hu, W. Cui, Mater. Res. Bull. 56, 25–33 (2014)

    CAS  Google Scholar 

  67. Y. Yang, D. Xu, Q. Wu, P. Diao, Sci. Rep. 6, 35158 (2016)

    CAS  Google Scholar 

  68. M.A. Ávila-López, E. Luévano-hipólito, L.M. Torres-martínez, J. Photochem. Photobiol. A 382, 111933 (2019)

    Google Scholar 

  69. Y. Zhang, Z. Jin, H. Yuan, G. Wang, B. Ma, Appl. Surf. Sci. 462, 213–225 (2018)

    CAS  Google Scholar 

  70. Y.-J. Hao, F.-T. Li, J. Zhao, R.-H. Liu, X.-J. Wang, Y.-P. Li, Y. Liu, Dalton Trans. 45, 2444–2453 (2016)

    CAS  Google Scholar 

  71. A. Sarkar, K. Karmakar, A.K. Singh, K. Mandal, G.G. Khan, Phys. Chem. Chem. Phys. 18, 26900–26912 (2016)

    CAS  Google Scholar 

  72. A. Sarkar, K. Karmakar, G.G. Khan, J. Phys. Chem. C 121, 25705–25717 (2017)

    CAS  Google Scholar 

  73. A. Sarkar, G.G. Khan, Nanoscale 11, 3414–3444 (2019)

    CAS  Google Scholar 

  74. J.A. Mendoza, H.K. Kim, H.K. Park, K.Y. Park, Korean J. Chem. Eng. 29, 1483–1486 (2012)

    CAS  Google Scholar 

  75. S. Pocoví-Martínez, I. Zumeta-dube, D. Diaz, 2019 (2019).

  76. L. Li, B. Cheng, Y. Wang, J. Yu, J. Colloid Interface Sci. 449, 115–121 (2015)

    CAS  Google Scholar 

  77. J. Hidalgo-Carrillo, J. Martín-Gómez, J. Morales, J.C. Espejo, F.J. Urbano, A. Marinas, Energies 12, 3352 (2019)

    Google Scholar 

  78. J. Ran, M. Jaroniec, S.-Z. Qiao, Adv. Mater. 30, 1704649 (2018)

    Google Scholar 

  79. T. Xiang, F. Xin, J. Chen, Y. Wang, X. Yin, Beilstein J. Nanotechnol. 7, 776–783 (2016)

    CAS  Google Scholar 

  80. Z. Liu, H. Bai, S. Xu, D.D. Sun, Int. J. Hydrogen Energy 36, 13473–13480 (2011)

    CAS  Google Scholar 

  81. J. Li, M. Zhang, Z. Guan, Q. Li, C. He, J. Yang, Appl. Catal. B 206, 300–307 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank to CONACYT for financial support through the CB-237049, FC-1725 grants, and to the UANL through SEP-RED PROFIDES 511-6/18-11852. Garay-Rodríguez thank CONACYT FC-1725 for his grant. We thank to Dr. Jorge Dávila and Dr. Santos García from the Biological Sciences Faculty, UANL for their valuable help with the HPLC formaldehyde quantification. Authors also thank to Dr. Eduardo Pérez and Dr. Mitchel Ruiz from Physics-Mathematics Faculty, UANL for their support with the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia M. Torres-Martínez.

Ethics declarations

Conflict of interest

The authors declare not conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garay-Rodríguez, L.F., Torres-Martínez, L.M. Extending the visible-light photocatalytic CO2 reduction activity of K2Ti6O13 with the MxOy (M = Co, Ni and Cu) incorporation. J Mater Sci: Mater Electron 31, 19248–19265 (2020). https://doi.org/10.1007/s10854-020-04461-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04461-w

Navigation