Skip to main content

Advertisement

Log in

Graphene Aerogels: Structure Control, Thermal Characterization and Thermal Transport

  • Invited Review
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Graphene aerogel (GA) as one of the innovative carbon nanostructured materials is superior with flexibility, strong mechanical strength, lightweight, high porosity and excellent durability, which attracted wide research interests and fulfill the requirements for various novel applications in energy conversion and storage, sensor, thermal management, and environment areas, etc. The thermal property among other important properties of GA is important for its novel applications. In this work, we first introduce the synthesis and microstructure control method for GA, including pore size control, anisotropic pore structure control, and heterostructure control. The methods for measuring the thermal conductivity of bulk GAs in air (apparent k) and the k of solid matrix of GAs are introduced in detail, respectively. Finally, we review the thermal transport models for GAs, including the air–solid coupling models, models for calculating the intrinsic thermal properties of graphene nanoflakes, as well as the thermal reffusivity model and dominating thermal contact resistance model. Challenges and opportunities in the study of thermal transport in 3D GAs are discussed. Considering the remarkable complexity of physical/chemical structure of GAs, there is still a large room in understanding fundamentals of energy transport in these three-dimensional graphene networks, which will pave the way toward their novel applications in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. C.H. Tan, J. Cao, A.M. Khattak, F.P. Cai, B. Jiang, G. Yang, S.Q. Hu, High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. J. Power Sources 270, 28–33 (2014)

    ADS  Google Scholar 

  2. Q.Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes—a review. J. Materiomics 2(1), 37–54 (2016)

    Google Scholar 

  3. Y.S. Xie, M. Han, R.D. Wang, H. Zobeiri, X. Deng, P.X. Zhang, X.W. Wang, Graphene aerogel based bolometer for ultrasensitive sensing from ultraviolet to far-infrared. ACS Nano 13(5), 5385–5396 (2019)

    Google Scholar 

  4. M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher, T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010)

    Google Scholar 

  5. X.T. Zhang, Z.Y. Sui, B. Xu, S.F. Yue, Y.J. Luo, W.C. Zhan, B. Liu, Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 21(18), 6494–6497 (2011)

    Google Scholar 

  6. Z.Y. Sui, Q.H. Meng, X.T. Zhang, R. Ma, B. Cao, Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem. 22(18), 8767–8771 (2012)

    Google Scholar 

  7. J. Li, F. Wang, C.Y. Liu, Tri-isocyanate reinforced graphene aerogel and its use for crude oil adsorption. J. Colloid Interface Sci. 382, 13–16 (2012)

    ADS  Google Scholar 

  8. J.H. Li, J.Y. Li, H. Meng, S.Y. Xie, B.W. Zhang, L.F. Li, H.J. Ma, J.Y. Zhang, M. Yu, Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem. A 2(9), 2934–2941 (2014)

    Google Scholar 

  9. X. Li, T. Liu, D. Wang, Q. Li, Z. Liu, N. Li, Y. Zhang, C. Xiao, X. Feng, Superlight adsorbent sponges based on graphene oxide cross-linked with poly(vinyl alcohol) for continuous flow adsorption. ACS Appl. Mater. Interfaces. 10(25), 21672–21680 (2018)

    Google Scholar 

  10. Z.S. Wu, Y. Sun, Y.Z. Tan, S.B. Yang, X.L. Feng, K. Mullen, Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 134(48), 19532–19535 (2012)

    Google Scholar 

  11. Q.Q. Zhang, X. Xu, H. Li, G.P. Xiong, H. Hu, T.S. Fisher, Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93, 659–670 (2015)

    Google Scholar 

  12. Q.Q. Zhang, M.L. Hao, X. Xu, G.P. Xiong, H. Li, T.S. Fisher, Flyweight 3D graphene scaffolds with microinterface barrier-derived tunable thermal insulation and flame retardancy. ACS Appl. Mater. Interfaces. 9(16), 14232–14241 (2017)

    Google Scholar 

  13. D.P. Dong, H.T. Guo, G.Y. Li, L.F. Yan, X.T. Zhang, W.H. Song, Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells. Nano Energy 39, 470–477 (2017)

    Google Scholar 

  14. Y. Fu, G. Wang, X. Ming, X.H. Liu, B.F. Hou, T. Mei, J.H. Li, J.Y. Wang, X.B. Wang, Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon 130, 250–256 (2018)

    Google Scholar 

  15. Y.F. Liu, Q.W. Shi, C.Y. Hou, Q.H. Zhang, Y.G. Li, H.Z. Wang, Versatile mechanically strong and highly conductive chemically converted graphene aerogels. Carbon 125, 352–359 (2017)

    Google Scholar 

  16. Y.J. Zhong, M. Zhou, F.Q. Huang, T.Q. Lin, D.Y. Wan, Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol. Energy Mater. Sol. Cells 113, 195–200 (2013)

    Google Scholar 

  17. J. Yang, E.W. Zhang, X.F. Li, Y.T. Zhang, J. Qu, Z.Z. Yu, Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50–57 (2016)

    Google Scholar 

  18. C.W. Yue, J. Feng, J.Z. Feng, Y.G. Jiang, Low-thermal-conductivity nitrogen-doped graphene aerogels for thermal insulation. Rsc Adv. 6(12), 9396–9401 (2016)

    Google Scholar 

  19. Y.S. Xie, S. Xu, Z.L. Xu, H.C. Wu, C. Deng, X.W. Wang, Interface-mediated extremely low thermal conductivity of graphene aerogel. Carbon 98, 381–390 (2016)

    Google Scholar 

  20. P.A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M.G. Spencer, Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8(12), 4248–4251 (2008)

    ADS  Google Scholar 

  21. T.T. Miao, S.Y. Shi, S. Yan, W.G. Ma, X. Zhang, K. Takahashi, T. Ikuta, Integrative characterization of the thermoelectric performance of an individual multiwalled carbon nanotube. J. Appl. Phys. 120(12), 6 (2016)

    Google Scholar 

  22. Y.F. Zhang, A.R. Fan, S.T. Luo, H.D. Wang, W.G. Ma, X. Zhang, Suspended 2D anisotropic materials thermal diffusivity measurements using dual-wavelength flash Raman mapping method. Int. J. Heat Mass Transfer 145, 1 (2019)

    Google Scholar 

  23. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 21 (2001)

    Google Scholar 

  24. T.Y. Choi, D. Poulikakos, J. Tharian, U. Sennhauser, Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method. Appl. Phys. Lett. 87, 1 (2005)

    Google Scholar 

  25. T. Baba, A. Ono, Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Meas. Sci. Technol. 12(12), 2046–2057 (2001)

    ADS  Google Scholar 

  26. X.W. Wang, Z.R. Zhong, J. Xu, Noncontact thermal characterization of multiwall carbon nanotubes. J. Appl. Phys. 97, 6 (2005)

    Google Scholar 

  27. J.Y. Hong, J.J. Wie, Y. Xu, H.S. Park, Chemical modification of graphene aerogels for electrochemical capacitor applications. Phys. Chem. Chem. Phys. 17(46), 30946–30962 (2015)

    Google Scholar 

  28. L.S. Chen, X.Z. Cui, Y.X. Wang, M. Wang, R.H. Qiu, Z. Shu, L.X. Zhang, Z.L. Hua, F.M. Cui, C.Y. Weia, J.L. Shi, One-step synthesis of sulfur doped graphene foam for oxygen reduction reactions. Dalton Trans. 43(9), 3420–3423 (2014)

    Google Scholar 

  29. Z. Fan, A. Marconnet, S.T. Nguyen, C.Y.H. Lim, H.M. Duong, Effects of heat treatment on the thermal properties of highly nanoporous graphene aerogels using the infrared microscopy technique. Int. J. Heat Mass Transf. 76, 122–127 (2014)

    Google Scholar 

  30. Q.Y. Peng, Y.Y. Qin, X. Zhao, X.X. Sun, Q. Chen, F. Xu, Z.S. Lin, Y. Yuan, Y. Li, J.J. Li, W.L. Yin, C. Gao, F. Zhang, X.D. He, Y.B. Li, Superlight, mechanically flexible, thermally superinsulating, and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly. ACS Appl. Mater. Interfaces 9(50), 44010–44017 (2017)

    Google Scholar 

  31. E. Garcia-Bordeje, S. Victor-Roman, O. Sanahuja-Parejo, A.M. Benito, W.K. Maser, Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method. Nanoscale 10(7), 3526–3539 (2018)

    Google Scholar 

  32. D. Tomanek, S. Berber, K. Umemoto, S. Saito, Hierarchical assembly of nanostructured carbon foam. Mol. Cryst. Liq. Cryst. 386, 189–195 (2002)

    Google Scholar 

  33. C.H. Wang, X. Chen, B. Wang, M. Huang, B. Wang, Y. Jiang, R.S. Ruoff, Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12(6), 5816–5825 (2018)

    Google Scholar 

  34. W.Z. Xu, Y. Xing, J. Liu, H.P. Wu, Y. Cuo, D.W. Li, D.Y. Guo, C.R. Li, A.P. Liu, H. Bai, Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. Acs Nano 13(7), 7930–7938 (2019)

    Google Scholar 

  35. M. Yang, N.F. Zhao, Y. Cui, W.W. Gao, Q. Zhao, C. Gao, H. Bai, T. Xie, Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11(7), 6817–6824 (2017)

    Google Scholar 

  36. Y.X. Xu, K.X. Sheng, C. Li, G.Q. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010)

    Google Scholar 

  37. W.F. Chen, L.F. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3(8), 3132–3137 (2011)

    ADS  Google Scholar 

  38. B. Yao, S. Chandrasekaran, H.Z. Zhang, A. Ma, J.Z. Kang, L. Zhang, X.H. Lu, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, 3D-Printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 32, 8 (2020)

    Google Scholar 

  39. X.J. Xu, P.Y. Li, L. Zhang, X.J. Liu, H.L. Zhang, Q.Z. Shi, B.J. He, W.J. Zhang, Z. Qu, P. Liu, Covalent functionalization of graphene by nucleophilic addition reaction: synthesis and optical-limiting properties. Chem. Asian J. 12(19), 2583–2590 (2017)

    Google Scholar 

  40. E. Garcia-Tunon, S. Barg, J. Franco, R. Bell, S. Eslava, E. D’Elia, R.C. Maher, F. Guitian, E. Saiz, Printing in three dimensions with graphene. Adv. Mater. 27(10), 1688–1693 (2015)

    Google Scholar 

  41. C. Zhu, T.Y.J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 23 (2015)

    Google Scholar 

  42. Y.X. Xu, W.J. Hong, H. Bai, C. Li, G.Q. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15), 3538–3543 (2009)

    Google Scholar 

  43. E. Greco, J. Shang, J.L. Zhu, T. Zhu, Synthesis of polyacetylene-like modified graphene oxide aerogel and its enhanced electrical properties. Acs Omega 4(25), 20948–20954 (2019)

    Google Scholar 

  44. F. Jiang, H. Liu, Y. Li, Y.D. Kuang, X. Xu, C.J. Chen, H. Huang, C. Jia, X.P. Zhao, E. Hitz, Y.B. Zhou, R.G. Yang, L.F. Cui, L.B. Hu, Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018)

    Google Scholar 

  45. B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, L. Bergstrom, Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10(3), 277–283 (2015)

    ADS  Google Scholar 

  46. P.P. Zhang, J. Li, L.X. Lv, Y. Zhao, L.T. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11(5), 5087–5093 (2017)

    Google Scholar 

  47. Y.M. Yao, Y.M. Li, X.L. Zeng, N. Sun, R. Sun, J.B. Xu, C.P. Wong, Liquid nitrogen driven assembly of nanomaterials into spongy millispheres for various applications. J. Mater. Chem. A 6(14), 5984–5992 (2018)

    Google Scholar 

  48. M.W. Pot, K.A. Faraj, A. Adawy, W.J.P. van Enckevort, H.T.B. van Moerkerk, E. Vlieg, W.F. Daamen, T.H. van Kuppevelt, Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS Appl. Mater. Interfaces 7(16), 8495–8505 (2015)

    Google Scholar 

  49. H. Hu, Z.B. Zhao, W.B. Wan, Y. Gogotsi, J.S. Qiu, Ultralight and highly compressible graphene aerogels. Adv. Mater. 25(15), 2219–2223 (2013)

    Google Scholar 

  50. H.C. Bi, K.B. Yin, X. Xie, Y.L. Zhou, N. Wan, F. Xu, F. Banhart, L.T. Sun, R.S. Ruoff, Low temperature casting of graphene with high compressive strength. Adv. Mater. 24(37), 5124–5129 (2012)

    Google Scholar 

  51. H.Y. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25(18), 2554–2560 (2013)

    Google Scholar 

  52. Z.H. Tang, S.L. Shen, J. Zhuang, X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angewandte Chemie-Int. Ed. 49(27), 4603–4607 (2010)

    Google Scholar 

  53. W.F. Chen, S.R. Li, C.H. Chen, L.F. Yan, Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 23(47), 5679–5683 (2011)

    Google Scholar 

  54. S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42(2), 794–830 (2013)

    Google Scholar 

  55. P. Wu, B. Zhang, Z. Yu, H.W. Zou, P.B. Liu, Anisotropic polyimide aerogels fabricated by directional freezing. J. Appl. Polym. Sci. 136, 11 (2019)

    Google Scholar 

  56. Y.M. Yao, X.D. Zhu, X.L. Zeng, R. Sun, J.B. Xu, C.P. Wong, Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl. Mater. Interfaces. 10(11), 9669–9678 (2018)

    Google Scholar 

  57. Y. Cui, H.X. Gong, Y.J. Wang, D.W. Li, H. Bai, A thermally insulating textile inspired by polar bear hair. Adv. Mater. 30, 14 (2018)

    Google Scholar 

  58. Z. Fan, D.Z.Y. Tng, C.X.T. Lim, P. Liu, S.T. Nguyen, P.F. Xiao, A. Marconnet, C.Y.H. Lim, H.M. Duong, Thermal and electrical properties of graphene/carbon nanotube aerogels. Colloids Surf. 445, 48–53 (2014)

    Google Scholar 

  59. Y. Chen, S. Yang, D.B. Fan, G.Y. Li, S.Q. Wang, Dual-enhanced hydrophobic and mechanical properties of long-range 3D anisotropic binary-composite nanocellulose foams via bidirectional gradient freezing. Acs Sustain. Chem. Eng. 7(15), 12878–12886 (2019)

    Google Scholar 

  60. D.C. Wu, F. Xu, B. Sun, R.W. Fu, H.K. He, K. Matyjaszewski, Design and preparation of porous polymers. Chem. Rev. 112(7), 3959–4015 (2012)

    Google Scholar 

  61. H.J. Zhan, K.J. Wu, Y.L. Hu, J.W. Liu, H. Li, X. Guo, J. Xu, Y. Yang, Z.L. Yu, H.L. Gao, X.S. Luo, J.F. Chen, Y. Ni, S.H. Yu, Biomimetic carbon tube aerogel enables super-elasticity and thermal insulation. Chem 5(7), 1871–1882 (2019)

    Google Scholar 

  62. C. Jimenez-Saelices, B. Seantier, B. Cathala, Y. Grohens, Effect of freeze-drying parameters on the microstructure and thermal insulating properties of nanofibrillated cellulose aerogels. J. Sol-Gel. Sci. Technol. 84(3), 475–485 (2017)

    Google Scholar 

  63. M. Yang, J.J. Wu, H. Bai, T. Xie, Q. Zhao, T.W. Wong, Controlling three-dimensional ice template via two-dimensional surface wetting. AIChE J. 62(12), 4186–4192 (2016)

    Google Scholar 

  64. Y.P. Cui, W. Liu, X. Wang, J.J. Li, Y. Zhang, Y.X. Du, S. Liu, H.L. Wang, W.T. Feng, M. Chen, Bioinspired mineralization under freezing conditions: an approach to fabricate porous carbons with complicated architecture and superior K + storage performance. ACS Nano 13(10), 11582–11592 (2019)

    Google Scholar 

  65. H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1, 111 (2015)

    Google Scholar 

  66. J.K. Han, G.L. Du, W.W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29, 13 (2019)

    Google Scholar 

  67. G.F. Shao, D.A.H. Hanaor, X.D. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32(17), 123 (2020)

    Google Scholar 

  68. F. An, X.F. Li, P. Min, H.F. Li, Z. Dai, Z.Z. Yu, Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 126, 119–127 (2018)

    Google Scholar 

  69. B. Li, S. Dong, X. Wu, C.P. Wang, X.J. Wang, J. Fang, Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites. Compos. Sci. Technol. 147, 52–61 (2017)

    Google Scholar 

  70. Z.H. Wu, C. Xu, C.Q. Ma, Z.B. Liu, H.M. Cheng, W.C. Ren, Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 31, 19 (2019)

    Google Scholar 

  71. B.B. Huo, D.G. Jiang, X.Y. Cao, H. Liang, Z. Liu, C.W. Li, J.Q. Liu, N-doped graphene/carbon hybrid aerogels for efficient solar steam generation. Carbon 142, 13–19 (2019)

    Google Scholar 

  72. X. Deng, Q.C. Nie, Y. Wu, H.S. Fang, P.X. Zhang, Y.S. Xie, Nitrogen-doped unusually superwetting, thermally insulating, and elastic graphene aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces. 12(23), 26200–26212 (2020)

    Google Scholar 

  73. J.C. Wang, R.G. Ma, Z.Z. Zhou, G.H. Liu, Q. Liu, Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction. Scientific Reports 5, 22 (2015)

    Google Scholar 

  74. X.M. Feng, J.L. Zhao, D.W. Sun, L. Shanmugam, J.K. Kim, J.L. Yang, Novel onion-like graphene aerogel beads for efficient solar vapor generation under non-concentrated illumination. J. Mater. Chem. A 7(9), 4400–4407 (2019)

    Google Scholar 

  75. H. Long, A. Harley-Trochimczyk, T. Pham, Z.R. Tang, T.L. Shi, A. Zettl, C. Carraro, M.A. Worsley, R. Maboudian, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Func. Mater. 26(28), 5158–5165 (2016)

    Google Scholar 

  76. L. Bao, T. Li, S. Chen, C. Peng, L. Li, Q. Xu, Y.S. Chen, E.C. Ou, W.J. Xu, 3D graphene frameworks/Co3O4 Composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13, 5 (2017)

    Google Scholar 

  77. F. Razmjooei, K.P. Singh, M.Y. Song, J.S. Yu, Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon 78, 257–267 (2014)

    Google Scholar 

  78. Y.H. Xue, D.S. Yu, L.M. Dai, R.G. Wang, D.Q. Li, A. Roy, F. Lu, H. Chen, Y. Liu, J. Qu, Three-dimensional B, N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Phys. Chem. Chem. Phys. 15(29), 12220–12226 (2013)

    Google Scholar 

  79. T.T. Zhang, J.H. Li, Y.W. Cao, L.Y. Zhu, G.B. Chen, Tailoring thermal transport properties of graphene by nitrogen doping. J. Nanoparticle Res. 19, 2 (2017)

    ADS  Google Scholar 

  80. I.K. Moon, S. Yoon, K.Y. Chun, J. Oh, Highly elastic and conductive N-doped monolithic graphene aerogels for multifunctional applications. Adv. Func. Mater. 25(45), 6976–6984 (2015)

    Google Scholar 

  81. Y.Z. Su, Y. Zhang, X.D. Zhuang, S. Li, D.Q. Wu, F. Zhang, X.L. Feng, Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon 62, 296–301 (2013)

    Google Scholar 

  82. S.B. Yang, L.J. Zhi, K. Tang, X.L. Feng, J. Maier, K. Mullen, Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Func. Mater. 22(17), 3634–3640 (2012)

    Google Scholar 

  83. R.T. Lu, C. Christianson, B. Weintrub, J.Z. Wu, High photoresponse in hybrid graphene-carbon nanotube infrared detectors. ACS Appl. Mater. Interfaces. 5(22), 11703–11707 (2013)

    Google Scholar 

  84. B.F. Cai, Y.J. Su, Z.J. Tao, J. Hu, C. Zou, Z. Yang, Y.F. Zhang, Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv. Opt. Mater. 6, 23 (2018)

    Google Scholar 

  85. X.B. Li, S.W. Yang, J. Sun, P. He, X.G. Xu, G.Q. Ding, Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon 78, 38–48 (2014)

    Google Scholar 

  86. J. Wang, J.L. Liu, J.S. Luo, P. Liang, D.L. Chao, L.F. Lai, J.Y. Lin, Z.X. Shen, MoS2 architectures supported on graphene foam/carbon nanotube hybrid films: highly integrated frameworks with ideal contact for superior lithium storage. J. Mater. Chem. A 3(34), 17534–17543 (2015)

    Google Scholar 

  87. J. Wang, J.L. Liu, D.L. Chao, J.X. Yan, J.Y. Lin, Z.X. Shen, Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 26(42), 7162–7169 (2014)

    Google Scholar 

  88. Q. Wang, J. Dai, X. He, Influence factors analysis of thermal conductivity measurement with hot disk technique. J Tianjin Univ. 2, 970–974 (2009)

    Google Scholar 

  89. H. Zhang, Y. Jin, W. Gu, Z.Y. Li, W.Q. Tao, A numerical study on the influence of insulating layer of the hot disk sensor on the thermal conductivity measuring accuracy. Prog. Comput. Fluid Dyn. 13(3–4), 191–201 (2013)

    Google Scholar 

  90. Q. Zheng, S. Kaur, C. Dames, R.S. Prasher, Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials. Int. J. Heat Mass Transfer 151, 198 (2020)

    Google Scholar 

  91. H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Solar steam generation by heat localization. Nat. Commun. 5, 9 (2014)

    Google Scholar 

  92. H.G. Liu, T.H. Li, Y.C. Shi, X. Zhao, Thermal insulation composite prepared from carbon foam and silica aerogel under ambient pressure. J. Mater. Eng. Perform. 24(10), 4054–4059 (2015)

    Google Scholar 

  93. Y. Xie, T. Wang, B. Zhu, C. Yan, P. Zhang, X. Wang, G. Eres, 19-Fold thermal conductivity increase of carbon nanotube bundles toward high-end thermal design applications. Carbon 139, 445–458 (2018)

    Google Scholar 

  94. H. Lin, S. Xu, X. Wang, N. Mei, Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam. Nanotechnology 24, 41 (2013)

    Google Scholar 

  95. J. Guo, X. Wang, T. Wang, Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. J. Appl. Phys. 101(6), 2222 (2007)

    Google Scholar 

  96. J. Liu, Z. Xu, Z. Cheng, S. Xu, X. Wang, Thermal conductivity of ultrahigh molecular weight polyethylene crystal: defect effect uncovered by 0 K limit phonon diffusion. ACS Appl. Mater. Interfaces 7(49), 27279–27288 (2015)

    Google Scholar 

  97. Z.L. Xu, X.W. Wang, H.Q. Xie, Promoted electron transport and sustained phonon transport by DNA down to 10 K. Polymer 55(24), 6373–6380 (2014)

    Google Scholar 

  98. C.H. Xing, T. Munro, C. Jensen, B. White, H. Ban, C.G. Copeland, R.V. Lewis, Thermophysical property measurement of electrically nonconductive fibers by the electrothermal technique. Meas. Sci. Technol. 25(11), 89 (2014)

    Google Scholar 

  99. S.E. Gustafsson, Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62(3), 797–804 (1991)

    ADS  Google Scholar 

  100. D.G. Cahill, Thermal-conductivity measurement from 30-K to 750-K - the 3-omega method. Rev. Sci. Instrum. 61(2), 802–808 (1990)

    ADS  Google Scholar 

  101. J. Kim, D.-J. Seo, H. Park, H. Kim, H.-J. Choi, W. Kim, Extension of the T-bridge method for measuring the thermal conductivity of two-dimensional materials. Rev. Sci. Instrum. 88(5), 8 (2017)

    Google Scholar 

  102. Z. Xu, S. Xu, X. Tang, X. Wang, Energy transport in crystalline DNA composites. AIP Adv. 4(1), 21 (2014)

    Google Scholar 

  103. Y. Xie, Z. Xu, S. Xu, Z. Cheng, N. Hashemi, C. Deng, X. Wang, The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0 K limit. Nanoscale 7(22), 10101–10110 (2015)

    ADS  Google Scholar 

  104. J. Moon, K. Weaver, B. Feng, H. Chae, S. Kumar, J.B. Baek, G.P. Peterson, Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method. Rev. Sci. Instrum 83, 1 (2012)

    Google Scholar 

  105. M.T. Pettes, H. Ji, R.S. Ruoff, L. Shi, Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett. 12(6), 2959–2964 (2012)

    ADS  Google Scholar 

  106. G. Gorgolis, C. Galiotis, Graphene aerogels: a review. Materials 4, 3 (2017)

    Google Scholar 

  107. K. Sakai, Y. Kobayashi, T. Saito, A. Isogai, Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose. Scientific Rep. 6, 88 (2016)

    Google Scholar 

  108. C.Y. Zhao, Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transf. 55(13–14), 3618–3632 (2012)

    Google Scholar 

  109. X.W. Wang, X.F. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transfer 13(4), 474–480 (1999)

    Google Scholar 

  110. W.D. Kingery, Thermal conductivity14 Conductivity of multicomponent systems. J. Am. Ceramic Soc. 42(12), 617–627 (1959)

    Google Scholar 

  111. M.M. Bernal, M. Tortello, S. Colonna, G. Saracco, A. Fina, Thermally and electrically conductive nanopapers from reduced graphene oxide: effect of nanoflakes thermal annealing on the film structure and properties. Nanomaterials 7(12), 88 (2017)

    Google Scholar 

  112. K.M.F. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012)

    ADS  Google Scholar 

  113. D. Konatham, D.V. Papavassiliou, A. Striolo, Thermal boundary resistance at the graphene-graphene interface estimated by molecular dynamics simulations. Chem. Phys. Lett. 527, 47–50 (2012)

    ADS  Google Scholar 

  114. P.U. Jepsen, B.M. Fischer, A. Thoman, H. Helm, J.Y. Suh, R. Lopez, R.F. Haglund, Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Phys. Rev. B 74(20), 3840–3845 (2006)

    Google Scholar 

  115. X.P. Zhao, C.L. Huang, Q.K. Liu, I.I. Smalyukh, R.G. Yang, Thermal conductivity model for nanofiber networks. J. Appl. Phys. 123(8), 12 (2018)

    Google Scholar 

  116. M.A. Schuetz, L.R. Glicksman, A basic study of heat-transfer through foam insulation. J. Cell. Plast. 20(2), 114–121 (1984)

    Google Scholar 

  117. J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene. Nat. Phys. 4(5), 377–381 (2008)

    Google Scholar 

  118. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)

    Google Scholar 

  119. Y.S. Xie, B.W. Zhu, J. Liu, Z.L. Xu, X.W. Wang, Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size. Front. Energy 12(1), 143–157 (2018)

    Google Scholar 

Download references

Acknowledgment

Support of this work by National Natural Science Foundation of China (No. 51906161) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangsu Xie.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Xiang, L., Mei, D. et al. Graphene Aerogels: Structure Control, Thermal Characterization and Thermal Transport. Int J Thermophys 41, 155 (2020). https://doi.org/10.1007/s10765-020-02740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02740-6

Keywords

Navigation