Skip to main content
Log in

The effect of negative Poisson’s ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, an investigation on the low-velocity impact (LVI) response of a shear deformable beam laminated by carbon nanotube reinforced composite (CNTRC) layers is performed. The composite beam is “auxetic” due to the negative out-of-plane Poisson’s ratio (NPR) through special symmetric stacking sequences of layers that are designed based on the Classical Laminate Theory. To study the effect of the out-of-plane NPR on the LVI response of the composite beam, a newly defined Hertz model is developed. The motion equations of Kármán type for the CNTRC laminate beam are derived in the framework of the Reddy beam theory and solved by means of a two-step perturbation approach while the dynamic equation of the impactor is built on Newton’s Law. Since temperature-dependent material properties of both carbon nanotube (CNT) and matrix are employed, the thermal influence on the LVI behavior is also investigated. Moreover, a piece-wise method is employed herein to investigate the effect of functionally graded (FG) patterns of the CNT reinforcements on the impact response. Numerical results elucidating the effects of temperature, FG distribution, and CNT volume fraction on the out-of-plane Poisson’s ratio and impact response of the beam are obtained by using a Range–Kutta method and discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  • Abrate, S.: Impact Engineering of Composite Structures. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  • Bayat, M.R., Rahmani, O., Mashhadi, M.M.: Nonlinear low-velocity impact analysis of functionally graded nanotube-reinforced composite cylindrical shells in thermal environments. Polym. Compos. 39, 730–745 (2018)

    Article  Google Scholar 

  • Chen, Y.J., Scarpa, F., Farrow, I.R., Liu, Y.J., Leng, J.S.: Composite flexible skin with large negative Poisson’s ratio range: numerical and experimental analysis. Smart Mater. Struct. 22, 045005 (2013)

    Article  Google Scholar 

  • Clarke, J.F., Duckett, R.A., Hine, P.J., Hutchinson, I.J., Ward, I.M.: Negative Poisson’s ratios in angle-ply laminates: theory and experiment. Composites 25, 863–868 (1994)

    Article  Google Scholar 

  • Dai, H.-L., Yan, X., Jiang, H.-J.: Investigation on thermomechanical behavior of a HSLA steel circular plate under impact load. Int. J. Mech. Mater. Des. 10, 411–420 (2014)

    Article  Google Scholar 

  • Ebrahimi, F., Habibi, S.: Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment. Adv. Nano Res. 5, 69–97 (2017)

    Article  Google Scholar 

  • Evans, K.E., Nkansah, M.A., Hutchinson, I.J., Rogers, S.C.: Molecular network design. Nature 353, 124 (1991)

    Article  Google Scholar 

  • Fan, Y., Wang, H.: The effects of matrix cracks on the nonlinear bending and thermal postbuckling of shear deformable laminated beams containing carbon nanotube reinforced composite layers and piezoelectric fiber reinforced composite layers. Compos. B 106, 28–41 (2016)

    Article  Google Scholar 

  • Fan, Y., Wang, H.: Nonlinear low-velocity impact analysis of matrix cracked hybrid laminated plates containing CNTRC layers resting on visco-Pasternak foundation. Compos. Part B 117, 9–19 (2017a)

    Article  Google Scholar 

  • Fan, Y., Wang, H.: Nonlinear low-velocity impact on damped and matrix-cracked hybrid laminated beams containing carbon nanotube reinforced composite layers. Nonlinear Dyn. 89, 1863–1876 (2017b)

    Article  MathSciNet  Google Scholar 

  • Fan, Y., Xiang, Y., Shen, H.-S., Wang, H.: Low-velocity impact response of FG-GRC laminated beams resting on visco-elastic foundations. Int. J. Mech. Sci. 141, 117–126 (2018a)

    Article  Google Scholar 

  • Fan, Y., Xiang, Y., Shen, H.-S., Hui, D.: Nonlinear low-velocity impact response of FG-GRC laminated plates resting on visco-elastic foundations. Compos. B 144, 184–194 (2018b)

    Article  Google Scholar 

  • Fan, Y., Xiang, Y., Shen, H.-S.: Temperature-dependent mechanical properties of graphene/Cu nanocomposites with in-plane negative Poisson’s ratios. Research 2020, 5618021 (2020)

    Google Scholar 

  • González, E.V., Maimí, P., Camanho, P.P., Turon, A., Mayugo, J.A.: Simulation of drop-weight impact and compression after impact tests on composite laminates. Compos. Struct. 94(11), 3364–3378 (2012)

    Article  Google Scholar 

  • Greszczuk, L.B.: Damage in composite materials due to low velocity impact. In: Zukas, J.A., et al. (eds.) Impact Dynamics. Wiley, New York (1982)

    Google Scholar 

  • Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007)

    Article  Google Scholar 

  • Harkati, E.H., Bezazi, A., Scarpa, F., Alderson, K., Alderson, A.: Modelling the influence of the orientation and fibre reinforcement on the negative Poisson’s ratio in composite laminates. Phys. Stat. Sol. 244, 883–892 (2007)

    Article  Google Scholar 

  • Heydari-Meybodi, M., Saber-Samandari, S., Sadighi, M.: An experimental study on low-velocity impact response of nanocomposite beams reinforced with nanoclay. Compos. Sci. Technol. 133, 70–78 (2016)

    Article  Google Scholar 

  • Heyliger, P.R., Reddy, J.N.: A higher-order beam finite element for bending and vibration problems. J. Sound Vib. 126, 309–326 (1988)

    Article  MATH  Google Scholar 

  • Hill C.B., Wang Y., Zhupanska O.I.: Effects of carbon nanotube buckypaper layers on the electrical and impact response of IM7/977-3 composite laminates. American Society for Composites 27th Annual Technical Conference, Arlington, TX. (2012)

  • Hill C.B., Wang Y., Zhupanska O.I.: Impact response of CFRP laminates with CNT buckypaper layers. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Boston, MA (2013). https://doi.org/10.2514/6.2013-1617

  • Hou, X., Hu, H., Silberschmidt, V.: A novel concept to develop composite structures with isotropic negative Poisson’s ratio: effects of random. Compos. Sci. Technol. 72(15), 1848–1854 (2012)

    Article  Google Scholar 

  • Jam, J.E., Kiani, Y.: Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 132, 35–43 (2015)

    Article  Google Scholar 

  • Kwon, H., Bradbury, R.C., Leparoux, M.: Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Adv. Eng. Mater. 13, 325–329 (2011)

    Article  Google Scholar 

  • Malekzadeh, P., Dehbozorgi, M.: Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates. Compos. Struct. 140, 728–748 (2016)

    Article  Google Scholar 

  • Mir, M., Ali, M.N., Sami, J., Ansari, U.: Review of mechanics and applications of auxetic structures. Adv. Mater. Sci. Eng. 2014, 753496 (2014)

    Article  Google Scholar 

  • Mittal, R.K., Khalili, M.R.: Analysis of impact of a moving body on an orthotropic elastic plate. AIAA J. 32, 850–856 (1994)

    Article  MATH  Google Scholar 

  • Olsson, R., Donadon, V.M., Falzon, G.B.: Delamination threshold load for dynamic impact on plates. Int. J. Solids Struct. 43, 31241–33141 (2006)

    Article  MATH  Google Scholar 

  • Pham, D.C., Lua, J., Sun, H., Zhang, D.: A three-dimensional progressive damage model for drop-weight impact and compression after impact. J. Compos. Mater. 54(4), 449–462 (2020)

    Article  Google Scholar 

  • Rilo, N.F., Ferreira, L.M.S.: Experimental study of low-velocity impacts on glass-epoxy laminated plates. Int. J. Mech. Mater. Des. 4, 291–300 (2008)

    Article  Google Scholar 

  • Salami, S.J.: Low velocity impact response of sandwich beams with soft cores and carbon nanotube reinforced face sheets based on Extended High Order Sandwich Panel Theory. Aerosp. Sci. Technol. 66, 165–176 (2017)

    Article  Google Scholar 

  • Shen, H.-S.: Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Article  Google Scholar 

  • Shen, H.-S., Zhang, C.-L.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31, 3403–3411 (2010)

    Article  Google Scholar 

  • Shen, H.-S., Li, C., Reddy, J.N.: Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson’s ratio. Comput. Methods Appl. Mech. Eng. 36, 112727 (2020a)

    Article  MathSciNet  MATH  Google Scholar 

  • Shen, H.-S., Huang, X.-H., Yang, J.: Nonlinear bending of temperature-dependent FG-CNTRC laminated plates with negative Poisson’s ratio. Mech. Adv. Mater. Struct. (2020b). https://doi.org/10.1080/15376494.2020.1716412

    Article  Google Scholar 

  • Song, Z.G., He, X., Liew, K.M.: Dynamic responses of aerothermoelastic functionally graded CNT reinforced composite panels in supersonic airflow subjected to low-velocity impact. Compos. B 149, 99–109 (2018)

    Article  Google Scholar 

  • Sun, C.T., Chen, J.K.: On the impact of initially stressed composite laminates. J. Compos. Mater. 19, 490 (1985)

    Article  Google Scholar 

  • Sveklo, V.A.: Hertz problem of compression of anisotropic bodies. J. Appl. Math. Mech. 38, 1023–1027 (1974)

    Article  MATH  Google Scholar 

  • Swanson, S.R.: Contact deformation and stress in orthotropic plates. Compos. A 36, 1421–1429 (2005)

    Article  Google Scholar 

  • Tan, K.T., Watanabe, N., Iwahori, Y.: Impact damage resistance, response, and mechanisms of laminated composites reinforced by through-thickness stitching. Int. J. Damage Mech. 21(1), 51–80 (2012)

    Article  Google Scholar 

  • Takakura, A., Beppu, K., Nishihara, T., Fukui, A., Kozeki, T., Namazu, T.: Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 10, 3040 (2019)

    Article  Google Scholar 

  • Turner, J.R.: Contact on a transversely isotropic half-space, or between two transversely isotropic bodie. Int. J. Solids Struct. 16, 409–419 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z.-X., Xu, J., Qiao, P.: Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates. Compos. Struct. 108, 423–434 (2014)

    Article  Google Scholar 

  • Yang, J., Huang, X.-H., Shen, H.-S.: Nonlinear flexural behavior of temperature-dependent FG-CNTRC laminated beams with negative Poisson’s ratio resting on the Pasternak foundation. Eng. Struct. 207, 110250 (2020a)

    Article  Google Scholar 

  • Yang, J., Huang, X.-H., Shen, H.-S.: Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson’s ratio. Thin Walled Struct. 148, 106514 (2020b)

    Article  Google Scholar 

  • Zarei, H., Fallah, M., Bisadi, H., Daneshmehr, A., Minak, G.: Multiple impact response of temperature-dependent carbon nanotube-reinforced composite (CNTRC) plates with general boundary conditions. Compos. B 113, 206–217 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Marvin B. Dow Advanced Composites Institute at Mississippi State University for providing the financial support of this project. Y. Wang thanks many helpful discussions with Dr. Barry Davidson (Professor at Mechanical and Aerospace Engineering Department, Syracuse University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeqing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

For the laminate with arbitrary layup, the relation between load and deformation is written as

$$ \left\{ {\begin{array}{*{20}c} {\mathbf{N}} \\ {\mathbf{M}} \\ \end{array} } \right\} = \left[ {\begin{array}{*{20}c} {\mathbf{A}} & {\mathbf{B}} \\ {\mathbf{B}} & {\mathbf{D}} \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\varvec{\upvarepsilon}} \\ {\varvec{\upkappa}} \\ \end{array} } \right\} $$
(A.1)

From Eq. (A.1), we have

$$ {\varvec{\upvarepsilon}} = {\mathbf{A}}^{ - 1} {\mathbf{N}} - {\mathbf{A}}^{ - 1} {\mathbf{B\varvec{\upkappa} }} $$
(A.2)
$$ {\mathbf{M}} = {\mathbf{B\varvec{\upvarepsilon} }} + {\mathbf{D\varvec{\upkappa} }} = {\mathbf{BA}}^{ - 1} {\mathbf{N}} + ({\mathbf{D}} - {\mathbf{BA}}^{ - 1} {\mathbf{B}}){\varvec{\upkappa}} $$
(A.3)

Equations (A.2) and (A.3) can be rewritten in the form of matrix and vectors

$$ \left\{ {\begin{array}{*{20}c} {\varvec{\upvarepsilon}} \\ {\mathbf{M}} \\ \end{array} } \right\} = \left[ {\begin{array}{*{20}c} {{\mathbf{A}}^{ - 1} } & { - {\mathbf{A}}^{ - 1} {\mathbf{B}}} \\ {{\mathbf{BA}}^{ - 1} } & {{\mathbf{D}} - {\mathbf{BA}}^{ - 1} {\mathbf{B}}} \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\mathbf{N}} \\ {\varvec{\upkappa}} \\ \end{array} } \right\} $$
(A.4)

Let \( {\mathbf{A}}^{ * } = {\mathbf{A}}^{ - 1} \), \( {\mathbf{B}}^{ * } = - {\mathbf{A}}^{ - 1} {\mathbf{B}} \), \( {\mathbf{H}}^{ * } = {\mathbf{BA}}^{ - 1} \), \( {\mathbf{D}}^{ * } = {\mathbf{D}} - {\mathbf{BA}}^{ - 1} {\mathbf{B}} \). Equation (4) can be expressed as

$$ \left\{ {\begin{array}{*{20}c} {\varvec{\upvarepsilon}} \\ {\mathbf{M}} \\ \end{array} } \right\} = \left[ {\begin{array}{*{20}c} {{\mathbf{A}}^{ * } } & {{\mathbf{B}}^{ * } } \\ {{\mathbf{H}}^{ * } } & {{\mathbf{D}}^{ * } } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\mathbf{N}} \\ {\varvec{\upkappa}} \\ \end{array} } \right\} $$
(A.5)

From Eq. (A.5), we have

$$ {\varvec{\upkappa}} = - {\mathbf{D}}^{ * - 1} {\mathbf{H}}^{ * } {\mathbf{N}} + {\mathbf{D}}^{ * - 1} {\mathbf{M}} $$
(A.6)
$$ {\varvec{\upvarepsilon}} = ({\mathbf{A}}^{ * } - {\mathbf{B}}^{ * } {\mathbf{D}}^{ * - 1} {\mathbf{H}}^{ * } ){\mathbf{N}} + {\mathbf{B}}^{ * } {\mathbf{D}}^{ * - 1} {\mathbf{M}} $$
(A.7)

According to Eqs. (4), (A.6) and (A.7) can be rewritten as

$$ \left\{ {\begin{array}{*{20}c} {\varvec{\upvarepsilon}} \\ {\varvec{\upkappa}} \\ \end{array} } \right\} = \left[ {\begin{array}{*{20}c} {{\mathbf{A}}^{ * } - {\mathbf{B}}^{ * } {\mathbf{D}}^{ * - 1} {\mathbf{H}}^{ * } } & {{\mathbf{B}}^{ * } {\mathbf{D}}^{ * - 1} } \\ { - {\mathbf{D}}^{ * - 1} {\mathbf{H}}^{ * } } & {{\mathbf{D}}^{ * - 1} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\mathbf{N}} \\ {\mathbf{M}} \\ \end{array} } \right\} $$
(A.8)

If there is no bending moment applied on the laminate, then we can obtain the expression of strain vector

$$ {\varvec{\upvarepsilon}} = \left( {{\mathbf{A}}^{ * } - {\mathbf{B}}^{ * } {\mathbf{D}}^{ * - 1} {\mathbf{H}}^{ * } } \right){\mathbf{N}} = \left( {{\mathbf{A}}^{ - 1} + {\mathbf{A}}^{ - 1} {\mathbf{B}}\left( {{\mathbf{D}} - {\mathbf{BA}}^{ - 1} {\mathbf{B}}} \right)^{ - 1} {\mathbf{BA}}^{ - 1} } \right){\mathbf{N}} = {\mathbf{JN}} $$
(A.9)

where

$$ {\varvec{\upvarepsilon}} = \left\{ {\begin{array}{*{20}c} {\varepsilon_{11} } & {\varepsilon_{22} } & {\varepsilon_{33} } & {\varepsilon_{12} } \\ \end{array} } \right\}^{T} ,\quad {\mathbf{N}} = \left\{ {\begin{array}{*{20}c} {N_{1} } & {N_{2} } & {N_{3} } & {N_{12} } \\ \end{array} } \right\}^{T} , $$
(A.10)
$$ \begin{aligned} {\mathbf{A}} & = \left[ {\begin{array}{*{20}c} {A_{11} } & {A_{12} } & {A_{13} } & {A_{16} } \\ {A_{12} } & {A_{22} } & {A_{23} } & {A_{26} } \\ {A_{13} } & {A_{23} } & {A_{33} } & {A_{36} } \\ {A_{16} } & {A_{26} } & {A_{36} } & {A_{66} } \\ \end{array} } \right],\quad {\mathbf{B}} = \left[ {\begin{array}{*{20}c} {B_{11} } & {B_{12} } & {B_{13} } & {B_{16} } \\ {B_{12} } & {B_{22} } & {B_{23} } & {B_{26} } \\ {B_{13} } & {B_{23} } & {B_{33} } & {B_{36} } \\ {B_{16} } & {B_{26} } & {B_{36} } & {B_{66} } \\ \end{array} } \right] \\ & \quad {\mathbf{D}} = \left[ {\begin{array}{*{20}c} {D_{11} } & {D_{12} } & {D_{13} } & {D_{16} } \\ {D_{12} } & {D_{22} } & {D_{23} } & {D_{26} } \\ {D_{13} } & {D_{23} } & {D_{33} } & {D_{36} } \\ {D_{16} } & {D_{26} } & {D_{36} } & {D_{66} } \\ \end{array} } \right], \\ \end{aligned} $$
(A.11)

Appendix B

In Eqs. (42) and (43)

$$ g_{30} = - \gamma_{17} + m^{2} \left( {\gamma_{18} + \gamma_{19} } \right)\frac{{\gamma_{21} m^{2} - \gamma_{23} }}{{\gamma_{22} m^{2} + \gamma_{23} }} - \left( {\gamma_{29} + \gamma_{28} \frac{{\gamma_{21} m^{2} - \gamma_{23} }}{{\gamma_{22} m^{2} + \gamma_{23} }}} \right)\frac{{\gamma_{12} m^{4} }}{{\gamma_{22} m^{2} + \gamma_{23} }} $$
(B.1)
$$ \begin{aligned} g_{31} & = m^{4} \left[ {\gamma_{11} - \gamma_{12} \frac{{\gamma_{21} m^{2} - \gamma_{23} }}{{\gamma_{22} m^{2} + \gamma_{23} }}} \right] + 2m^{2} \pi \left[ {\gamma_{15} - \gamma_{14} \frac{{\gamma_{21} - \gamma_{23} }}{{\gamma_{22} + \gamma_{23} }}} \right]\varPhi \\ & \quad + 2\pi C_{1} \left[ {\gamma_{15} - \gamma_{14} \frac{{\gamma_{21} m^{2} - \gamma_{23} }}{{\gamma_{22} m^{2} + \gamma_{23} }}} \right]\varPhi \\ \end{aligned} $$
(B.2)
$$ \begin{aligned} g_{32} & = 2m^{3} \pi \left[ {\gamma_{15} - \gamma_{14} \frac{{\gamma_{21} m^{2} - \gamma_{23} }}{{\gamma_{22} m^{2} + \gamma_{23} }}} \right] \\ & \quad + \frac{3}{4}\pi^{2} C_{2} \gamma_{13} \varPhi \\ \end{aligned} $$
(B.3)
$$ g_{33} = \frac{{m^{4} \pi^{2} }}{4}\gamma_{13} $$
(B.4)
$$ g_{q} = \frac{{ 2k_{c} bL^{{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0pt} 2}}} }}{{\pi^{3} \bar{D}_{11} }}\sin \frac{m}{2}\pi $$
(B.5)
$$ g_{i} = - \frac{{k_{c} \rho_{0} L^{{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0pt} 2}}} }}{{\pi^{2} ME_{0} }} $$
(B.6)

In Eqs. (B.2) and (B.3), C1 and C2 are dependent on the value of m. When m = 1, C1 and C2 are both equaled to 1. In other case, C1 = C2 = 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wang, Y. The effect of negative Poisson’s ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam. Int J Mech Mater Des 17, 153–169 (2021). https://doi.org/10.1007/s10999-020-09521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09521-x

Keywords

Navigation