Skip to main content

Advertisement

Log in

Fuzzy Rule-Based Signal Restoration for Wireless Optical Communication of Multi-autonomous Underwater Vehicles

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

As a complex process, wireless optical communication of autonomous underwater vehicles (AUVs) is particularly challenging in the complex communication environment. Therefore, the existing control or denoise systems show some limitations for communication system of multi-AUV. It is still difficult to balance between the complexity of underwater environment and the performance of reality or estimation. This paper is about to investigate the possibility of combining this realistic communication environment for AUVs with existing strategies in fuzzy control framework. More specifically, first, a model for underwater wireless optical communication (UWOC) is proposed, then, signal restore model for UWOC based on fuzzy control is developed for simulation and analysis purposes. To illustrate the superiority of the proposed methods, several common denoising methods are experimented and compared together. It is also shown that the fuzzy control for signal restore model can well adapt to the real communication environment, and ensure more efficiency and stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, S., Ho, D.W.: Consensus control for multiple AUVs under imperfect information caused by communication faults. Inform. Sci. 20(370), 565–577 (2016)

    Article  Google Scholar 

  2. Grothues, T.M., Newhall, A.E., Lynch, J.F., Vogel, K.S., Gawarkiewicz, G.G.: High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles. Can. J. Fish. Aquat. Sci. 74(2), 240–255 (2017)

    Article  Google Scholar 

  3. Das, B., Subudhi, B., Pati, B.B.: Cooperative formation control of autonomous underwater vehicles: an overview. Int. J. Autom. Comput. 13(03), 199–225 (2016)

    Article  Google Scholar 

  4. Xu, J., Song, Y., Yu, X., Lin, A., Deng, N.: Underwater wireless transmission of high-speed qam-ofdm signals using a compact red-light laser. Opt. Exp. 24(8), 8097 (2016)

    Article  Google Scholar 

  5. Tang, S., Dong, Y., Zhang, X.: Impulse response modeling for underwater wireless optical communication links. IEEE Trans. Commun. 62(1), 226–234 (2013)

    Article  Google Scholar 

  6. Gabriel, C., Khalighi, M.A., Bourennane, S., Léon, Pierre, Rigaud, V.: Monte-carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 5(1), 1 (2013)

    Article  Google Scholar 

  7. Wang, W., Wang, P., Cao, T., Tian, H., Zhang, Y., Guo, L.: Performance investigation of underwater wireless optical communication system using m-ary oamsk modulation over oceanic turbulence. IEEE Photon. J. 9(5), 1–15 (2017)

    Google Scholar 

  8. Yi, X., Li, Z., Liu, Z.: Underwater optical communication performance for laser beam propagation through weak oceanic turbulence. Appl. Opt. 54(6), 1273 (2015)

    Article  Google Scholar 

  9. Charnotskii, M.: Bit error rate of focused gaussian beams in weak oceanic turbulence: comment. J. Opt. Soc. Am. A 32(7), 1247 (2015)

    Article  Google Scholar 

  10. Tsonev, Dobroslav, Sinanovic, Sinan, Haas, Harald: Complete modeling of nonlinear distortion in ofdm-based optical wireless communication. J. Lightwave Technol. 31(18), 3064–3076 (2013)

    Article  Google Scholar 

  11. Zeng, Z., Fu, S., Zhang, H., Dong, Y., Cheng, J.: A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 19(1), 204–238 (2017)

    Article  Google Scholar 

  12. Steinbring, J., Zea, A., Hanebeck, U. D.: Semi-analytic progressive Gaussian filtering. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2016). IEEE (2016)

  13. Kemna, S., Caron, D. A., & Sukhatme, G. S.:. Adaptive informative sampling with autonomous underwater vehicles: acoustic versus surface communications. In: OCEANS 2016 MTS/IEEE Monterey. IEEE (2016)

  14. Deguchi, M., Kida, Y., Meguro, K., Watanabe, Y., Akamine, Y.: A basic study of acoustic communications between an autonomous surface vehicle and an autonomous underwater vehicle. J. Acoust. Soc. Am. 140(4), 3057 (2016)

    Article  Google Scholar 

  15. Caiti, A., Ciaramella, E., Conte, G., Cossu, G., Sturniolo, A.: OptoCOMM: introducing a new optical underwater wireless communication modem. In: Underwater Communications and Networking Conference (UComms), 2016 IEEE Third. IEEE (2016)

  16. Hanson, F., Radic, S.: High bandwidth underwater optical communication. Appl. Opt. 47(2), 277–283 (2008)

    Article  Google Scholar 

  17. Lacovara, P.: High-bandwidth underwater communications. Mar. Technol. Soc. J. 42(1), 93–102 (2008)

    Article  Google Scholar 

  18. Chen, Y., Hu, X., Wang, D., Chen, H., Ren, H.: Researches on underwater transmission characteristics of blue-green laser. In: OCEANS 2014—TAIPEI. IEEE (2014)

  19. Escada, J., Stauffer, A.D., Santos, F.P., Conde, C.A.N., Lopes, J.A.M., Dias, T.H.V.T., et al.: A Monte Carlo study of backscattering effects in the photoelectron emission into CH/sub 4/and Ar-CH/sub 4/mixtures. In: Nuclear Science Symposium Conference Record. IEEE (2017)

  20. Hao, Y., Zhang, Y., Chai, Z., Pei, H., Yang, W.: Fog patches laser scattering characteristics and its application in intelligent traffic monitoring. Transducer Microsyst. Technol. 36(8), 155–157 (2017)

    Google Scholar 

  21. Robinson, D.W.: Propagation properties in scattering theory. ANZIAM J. 21(4), 474–485 (1980)

    MathSciNet  MATH  Google Scholar 

  22. Jursa, A.S., Signed/Inscribed, E.E.: Handbook of geophysics and the space environment. Air Force Systems Command (1985)

  23. Liu, L., Yue, P., Cui, Z.: Monte carlo simulation of uplink laser transmission across medium. J. Xidian Univ. 4, 176–181 (2019)

    Google Scholar 

  24. Guan, Y., He, F., Yang, Y., Duan, Z., Zhu, Y., Gao, Z.: Channel characteristics analysis of ocean underwater laser communication based on monte carlo. Opt. Commun. Technol. 040(012), 52–54 (2016)

    Google Scholar 

  25. Dong, Y., Qingji, X.: Atmosphere-ocean laser communication channel simulation and modeling. In: Computing, Communication, Control, and Management, 2009. CCCM 2009. ISECS International Colloquium on. IEEE (2009)

  26. Huang, A., Zhang, Y., Tao, L.: Monte carlo simulation on channel characteristics of underwater laser communication. Infrared Laser Eng. 46(4), 422004 (2017)

    Article  Google Scholar 

  27. Hajjarian, Z., Fadlullah, J., Kavehrad, M.: Use of Markov chain in atmospheric channel modeling of free space laser communications. In: Military Communications Conference, 2008. MILCOM 2008. IEEE. IEEE (2008)

  28. Passino, K.M., Yurkovich, S.: Fuzzy Control. Tsinghua University Press, Beijing (2001)

    Google Scholar 

  29. Huang, C.-H.: An effective method for a fuzzy multiobjective program with quasiconcave membership functions and fuzzy coefficients. Int. J. Fuzzy Syst. 16(2), 256–264 (2014)

    MathSciNet  Google Scholar 

  30. Miliauskait, J., Kalibatiene, D.: On general framework of type-1 membership function construction: case study in qos planning. Int. J. Fuzzy Syst. 22(2), 504–521 (2020)

    Article  Google Scholar 

  31. Wang, F., Yang, Y., Duan, Z.: Characteristic analysis of underwater laser signal transmission channel based on visible light. Opt. Commun. Technol. 40(3), 26–28 (2016)

    Google Scholar 

  32. Saeed, N., Celik, A., Al-Naffouri, T.Y., Alouini, M.S.: Underwater optical wireless communications, networking, and localization: a survey. Ad Hoc Netw. 94, 101935 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Gu, Y. & Zhang, Y. Fuzzy Rule-Based Signal Restoration for Wireless Optical Communication of Multi-autonomous Underwater Vehicles. Int. J. Fuzzy Syst. 23, 1840–1848 (2021). https://doi.org/10.1007/s40815-020-00935-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00935-5

Keywords

Navigation