Skip to main content
Log in

A void growth- and coalescence-dependent anisotropic damage model for polymeric foams

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We present an elastic damage constitutive model for polymeric foam based on thermodynamics framework to consider the effects of anisotropy and the growth and coalescence of cavities. The evolution equation of the proposed model describes the material behavior sustaining anisotropic and unilateral damage. To carry out finite element analysis, the material properties for various polymeric foams are applied to the proposed damage model; we thus implement the proposed damage model in the commercial finite element program as a user-defined material subroutine. In order to validate the proposed anisotropic damage model, the numerical results are compared to the results of a series of tensile and compressive tests on various polymeric foams. Additionally, we propose the failure criterion for this damage model as based on the mass-dependent energy per unit mass at failure. The developed damage model can be used for further research on damage mechanics and finite element analysis of polymeric foams in continuum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bahadori, A.: Thermal Insulation Handbook for the Oil, Gas, and Petrochemical Industries, 1st edn. Gulf Professional Publishing, Oxford (2014)

    Google Scholar 

  2. Desai, S., Thakore, I.M., Sarawade, B.D., Devi, S.: Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes. Eur. Polym. J (2000). https://doi.org/10.1016/S0014-3057(99)00114-7

    Article  Google Scholar 

  3. Wang, L.L.: Foundations of Stress Waves, 1st edn. Elsevier BV, Amsterdam (2007)

    Google Scholar 

  4. Kwon, S.B., Lee, J.M.: A non-oscillatory time integration method for numerical simulation of stress wave propagations. Comput. Struct. (2017). https://doi.org/10.1016/j.compstruc.2017.07.030

    Article  Google Scholar 

  5. Hamilton, A.R., Thomsen, O.T., Madaleno, L.A.O., Jensen, L.R., Rauhe, J.C.M., Pyrz, R.: Evaluation of the anisotropic mechanical properties of reinforced polyurethane foams. Compos. Sci. Technol. (2013). https://doi.org/10.1016/j.compscitech.2013.08.013

    Article  Google Scholar 

  6. Kabir, MdE, Saha, M.C., Jeelani, S.: Tensile and fracture behavior of polymer foams. Mater. Sci. Eng., A (2006). https://doi.org/10.1016/j.msea.2006.05.133

    Article  Google Scholar 

  7. Lee, C.S., Lee, J.M.: Anisotropic elasto-viscoplastic damage model for glass-fiber-reinforced polyurethane foam. J. Compos. Mater. (2014). https://doi.org/10.1177/0021998313509863

    Article  Google Scholar 

  8. Daniel, I.M., Cho, J.M.: Characterization of anisotropic polymeric foam under static and dynamic loading. Exp. Mech. (2011). https://doi.org/10.1007/s11340-011-9466-3

    Article  Google Scholar 

  9. Saint-Michel, F., Chazeau, L., Cavaille, J.Y., Chabert, E.: Mechanical properties of high density polyurethane foams: I. effect of the density. Compos. Sci. Technol. (2006). https://doi.org/10.1016/j.compscitech.2006.03.009

    Article  Google Scholar 

  10. Saint-Michel, F., Chazeau, L., Cavaille, J.Y.: Mechanical properties of high density polyurethane foams: II. effect of the filler size. Compos. Sci. Technol. 66, 2709–2718 (2006). https://doi.org/10.1016/j.compscitech.2006.03.008

    Article  Google Scholar 

  11. Park, S.B., Lee, C.S., Choi, S.W., Kim, J.H., Bang, C.S., Lee, J.M.: Polymeric foams for cryogenic temperature application: temperature range for non-recovery and brittle-fracture of microstructure. Compos. Struct. (2016). https://doi.org/10.1016/j.compstruct.2015.10.002

    Article  Google Scholar 

  12. Cotgreave, T., Shortall, J.B.: Failure mechanisms in fibre reinforced rigid polyurethane foam. J. Cell. Plast. 13(4), 240–244 (1977)

    Article  Google Scholar 

  13. Andersons, J., Kirpluks, M., Stiebra, L., Cabulis, U.: Anisotropy of the stiffness and strength of rigid low-density closed-cell polyisocyanurate foams. Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2015.12.122

    Article  Google Scholar 

  14. Lee, C.S., Kim, M.S., Park, S.B., Kim, J.H., Bang, C.S., Lee, J.M.: A temperature- and strain-rate-dependent isotropic elasto-viscoplastic model for glass-fiber-reinforced polyurethane foam. Mater. Des. (2015). https://doi.org/10.1016/j.matdes.2015.06.086

    Article  Google Scholar 

  15. Lee, J.H., Kim, S.K., Park, S.B., Bang, C.S., Lee, J.M.: Application of Gurson model for evaluation of density-dependent mechanical behavior of polyurethane foam: comparative study on explicit and implicit method. Macromol. Mater. Eng. (2016). https://doi.org/10.1002/mame.201500431

    Article  Google Scholar 

  16. Lee, C.S., Chun, M.S., Kim, M.H., Lee, J.M.: Numerical evaluation for debonding failure phenomenon of adhesively bonded joints at cryogenic temperature. Compos. Sci. Tech. (2011). https://doi.org/10.1016/j.compscitech.2011.09.007

    Article  Google Scholar 

  17. Dillard, T., Forest, S., Ienny, P.: Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A/Solids (2006). https://doi.org/10.1016/j.euromechsol.2005.11.006

    Article  MATH  Google Scholar 

  18. Pampolini, G., Raous, M.: Nonlinear elasticity, viscosity and damage in open-cell polymeric foams. Arch. Appl. Mech. (2014). https://doi.org/10.1007/s00419-014-0891-5

    Article  Google Scholar 

  19. Batdorf, S.B.: Weibull statistics for polyaxial stress states. J. Am. Ceram. Soc. (1974). https://doi.org/10.1111/j.1151-2916.1974.tb11364.x

    Article  Google Scholar 

  20. Voyiadjis, G.Z., Palazotto, A.N., Gao, X.L.: Modeling of metallic materials at high strain rates with continuum damage mechanics. Appl. Mech. (2002). https://doi.org/10.1115/1.1495522

    Article  Google Scholar 

  21. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer-Verlag, Berlin (2005)

    Google Scholar 

  22. Mazars, J.: A description of micro- and macro-scale damage of concrete structures. Eng. Fract. Mech. (1986). https://doi.org/10.1016/0013-7944(86)90036-6

    Article  Google Scholar 

  23. Mazars, J., Pijaudier-Cabot, G.: Continuum damage theory - application to concrete. J. Eng. Mech. (1989). https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)

    Article  MATH  Google Scholar 

  24. Murakami, S., Kamiya, K.: Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int. J. Mech. Sci. (1997). https://doi.org/10.1016/S0020-7403(97)87627-8

    Article  MATH  Google Scholar 

  25. Ju, J.W.: On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int. J. Solids Struct. (1989). https://doi.org/10.1016/0020-7683(89)90015-2

    Article  MATH  Google Scholar 

  26. Lubarda, V.A., Krajcinovic, D., Mastilovic, S.: Damage model for brittle elastic solids with unequal tensile and compressive strengths. Eng. Fract. Mech. (1994). https://doi.org/10.1016/0013-7944(94)90033-7

    Article  Google Scholar 

  27. Halm, D., Dragon, A.: An anisotropic model of damage and frictional sliding for brittle materials. Eur. J. Mech. A/Solids (1998). https://doi.org/10.1016/S0997-7538(98)80054-5

    Article  MathSciNet  MATH  Google Scholar 

  28. Mouritz, A.P.: Introduction to Aerospace Materials. Woodhead Publishing, Cambridge (2012)

    Book  Google Scholar 

  29. Bao, J.B., Junior, A.N., Weng, G.S., Wang, J., Fang, Y.W., Hu, G.H.: Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide. J. Supercrit. Fluid (2016). https://doi.org/10.1016/j.supflu.2016.01.016

    Article  Google Scholar 

  30. Song, W., Barber, K., Lee, K.Y.: Heat-induced bubble expansion as a route to increase the porosity of foam-templated bio-based microporous polymers. Polymer (2017). https://doi.org/10.1016/j.polymer.2017.04.058

    Article  Google Scholar 

  31. Rousselier, G.: Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. (1987). https://doi.org/10.1016/0029-5493(87)90234-2

    Article  Google Scholar 

  32. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. Trans. (1977). https://doi.org/10.1115/1.3443401

    Article  Google Scholar 

  33. Gurson, A.L.: Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth, and Interaction, Ph.D. thesis, Brown Univ. (1975)

  34. Chu, C.C., Needleman, A.: Void nucleation effects in biaxially stretched sheets. J. Eng. Mater. Technol. (1980). https://doi.org/10.1115/1.3224807

    Article  Google Scholar 

  35. Tvergaard, V., Needleman, A.: Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. (1984). https://doi.org/10.1016/0001-6160(84)90213-X

    Article  Google Scholar 

  36. Wulfinghoff, S., Fassin, M., Reese, S.: A damage growth criterion for anisotropic damage models motivated from micromechanics. Int. J. Solids Struct. (2017). https://doi.org/10.1016/j.ijsolstr.2017.04.038

    Article  Google Scholar 

  37. Govindjee, S., Kay, G.J., Simo, J.C.: Anisotropic modelling and numerical simulation of brittle damage in concrete. Int. J. Numer. Methods Eng. (1995). https://doi.org/10.1002/nme.1620382105

    Article  MATH  Google Scholar 

  38. Wippler, J., Fett, T., Böhlke, T., Hoffmann, M.J.: A micromechanically motivated finite element approach to the fracture toughness of silicon nitride. J. Eur. Ceram. Soc. (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.01.013

    Article  Google Scholar 

  39. Ramtani, S., Berthaud, Y., Mazars, J.: Orthotropic behavior of concrete with directional aspects: modelling and experiments. Nucl. Eng. Des. (1992). https://doi.org/10.1016/0029-5493(92)90094-C

    Article  Google Scholar 

  40. Al-Rub, R.K.A., Voyiadjis, G.Z.: On the coupling of anisotropic damage and plasticity models for ductile materials. Int. J. Solids Struct. (2003). https://doi.org/10.1016/S0020-7683(03)00109-4

    Article  MATH  Google Scholar 

  41. Chaboche, C.L.: Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition. Int. J. Damage Mech (1992). https://doi.org/10.1177/105678959200100201

    Article  Google Scholar 

  42. Zafati, E., Richard, B.: Anisotropic continuum damage constitutive model to describe the cyclic response of quasi-brittle materials: the regularized unilateral effect. Int. J. Solids Struct. (2019). https://doi.org/10.1016/j.ijsolstr.2018.12.009

    Article  Google Scholar 

  43. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, III/3 (1965). Springer, Berlin (2004)

    Google Scholar 

  44. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  45. Germain, P.: Cours de Mecanique des Milieux Continus. Masson et Cie, Paris (1973)

    MATH  Google Scholar 

  46. Rice, J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids (1971). https://doi.org/10.1016/0022-5096(71)90010-X

    Article  MATH  Google Scholar 

  47. Rice, J.R.: Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanics. In: Argon, A.S. (ed.) Constitutive Equations in Plasticity, pp. 23–79. MIT Press, Cambridge (1975)

    Google Scholar 

  48. Lemaitre, J., Chaboche, J.L.: Mecanique des Materiaux Solides, Dunod, Paris, 1985, Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  49. Hayakawa, K., Murakami, S.: Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int. J. Damage Mech (1997). https://doi.org/10.1177/105678959700600401

    Article  Google Scholar 

  50. Murakami, S.: Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Springer, Berlin (2012)

    Book  Google Scholar 

  51. Chow, C.L., Wang, J.: An anisotropic theory of elasticity for continuum damage mechanics. Int. J. Fract. (1987). https://doi.org/10.1007/BF00034895

    Article  Google Scholar 

  52. Chow, C.L., Wang, J.: An anisotropic theory of continuum damage mechanics for ductile fracture. Eng. Fract. Mech. (1987). https://doi.org/10.1016/0013-7944(87)90108-1

    Article  Google Scholar 

  53. Lee, H., Peng, K., Wang, J.: An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates. Eng. Fract. Mech. (1985). https://doi.org/10.1016/0013-7944(85)90008-6

    Article  MATH  Google Scholar 

  54. Chaboche, J.L.: Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage. Int. J. Damage Mech 2, 311–329 (1993)

    Article  Google Scholar 

  55. Murakami, S.: Mechanical modeling of material damage. J. Appl. Mech. Trans. (1988). https://doi.org/10.1115/1.3173673

    Article  Google Scholar 

  56. Krajcinovic, D., Lemaitre, J.: Continuum Damage Mechanics - Theory and Applications. Springer-Verlag, Berlin (1986)

    MATH  Google Scholar 

  57. Tu, Z.H., Shim, V.P.W., Lim, C.T.: Plastic deformation modes in rigid polyurethane foam under static loading. Int. J. Solids Struct. (2001). https://doi.org/10.1016/S0020-7683(01)00213-X

    Article  Google Scholar 

  58. Huber, A.T., Gibson, L.J.: Anisotropy of foams. J. Mater. Sci. (1988). https://doi.org/10.1007/BF00547486

    Article  Google Scholar 

  59. Pérez-Foguet, A., Rodríguez-Ferran, A., Huerta, A.: Numerical differentiation for local and global tangent operators in computational plasticity. Comput. Methods Appl. Mech. Engrg. (2000). https://doi.org/10.1016/S0045-7825(99)00296-0

    Article  MATH  Google Scholar 

  60. Sarkar, J., Annepu, H., Mishra, S.K.: Simulating contact instability in soft thin films through finite element techniques. Perusal Finite Element Method (2016). https://doi.org/10.5772/65357

    Article  Google Scholar 

  61. Mishnaevsky Jr., L., Schmauder, S.: Numerical analysis of the effect of microstructures of particle-reinforced metallic materials on the crack growth and fracture resistance. Int. J. Fract. (2004). https://doi.org/10.1023/B:FRAC.0000021031.67717.9f

    Article  MATH  Google Scholar 

  62. Mishnaevsky Jr., L.L.: Computational Mesomechanics of Composites: Numerical Analysis of the Effect of Microstructures of Composites of Strength and Damage Resistance. John Wiley and Sons, Hoboken (2007)

    Google Scholar 

  63. Mishnaevsky Jr., L., Brøndsted, P.: Micromechanisms of damage in unidirectional fiber reinforced composites: 3D computational analysis. Compos. Sci. Tech. (2009). https://doi.org/10.1016/j.compscitech.2009.01.022

    Article  Google Scholar 

  64. Mishnaevsky Jr., L.L., Schmauder, S.: Continuum mesomechanical finite element modeling in materials development: A state-of-the-art review. Appl. Mech. Rev. (2001). https://doi.org/10.1115/1.3097288

    Article  Google Scholar 

  65. Tomičević, Z., Kodvanj, J., Hild, F.: Characterization of the nonlinear behavior of nodular graphite cast iron via inverse identification - analysis of uniaxial tests. Eur. J. Mech. A/Solids (2016). https://doi.org/10.1016/j.euromechsol.2016.02.010

    Article  Google Scholar 

  66. Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. (2005). https://doi.org/10.1016/j.jbiomech.2004.09.027

    Article  Google Scholar 

  67. Grace, I., Pilipchuk, V., Ibrahim, R., Ayorinde, E.: Temperature effect on non-stationary compressive loading response of polymethacrylimide solid foam. Compos. Struct. (2012). https://doi.org/10.1016/j.compstruct.2012.04.022

    Article  Google Scholar 

  68. Landro, L.D., Sala, G., Olivieri, D.: Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polym. Test (2002). https://doi.org/10.1016/S0142-9418(01)00073-3

    Article  Google Scholar 

  69. Kádár, C., Chmelik, F., Cieslar, M., Lendvai, J.: Acoustic emission of salt-replicated foams during compression. Scripta Mater. (2008). https://doi.org/10.1016/j.scriptamat.2008.07.003

    Article  Google Scholar 

  70. Salleh, Z.: Characterisation of syntactic foams for marine applications. University of Southern Queensland, Diss (2017)

    Google Scholar 

  71. Wang, J., Wang, N., Liu, X., Ding, J., Xia, X., Chen, X., Zhao, W.: Compressive deformation behavior of closed-cell micro-pore magnesium composite foam. Materials (2018). https://doi.org/10.3390/ma11050731

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the R&D Platform Establishment of Eco-Friendly Hydrogen Propulsion Ship Program (No. 20006644) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT) (No. 2018R1A2B6007403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Myung Lee.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, SB., Kim, JD. & Lee, JM. A void growth- and coalescence-dependent anisotropic damage model for polymeric foams. Continuum Mech. Thermodyn. 33, 545–561 (2021). https://doi.org/10.1007/s00161-020-00926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00926-9

Keywords

Navigation