Skip to main content
Log in

Master-master frictional contact and applications for beam-shell interaction

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The surface-to-surface master–master contact treatment is a technique that addresses pointwise contact between bodies with no prior election of slave points, as in master–slave case. For a given configuration of contact-candidate surfaces, one needs to find the material points associated with a pointwise contact interaction. This is the local contact problem (LCP). The methodology can be applied together with numerical models such as geometrically nonlinear finite elements, discrete elements and multibody dynamics. A previous publication has addressed the possibility of degenerating the local contact problem, which yields the derivation of point-surface, curve-surface and other simplifications on the geometric treatment in the same mathematical formulation, sharing a single numerical implementation. This has useful applications for singularities or non-uniqueness scenarios on the LCP. The present work provides a framework for the degenerated master–master contact formulation including friction. An enhanced friction model is proposed, accounting for a combination of elastic and dissipative effects at the interface. Details of derivations and numerical implementation are given as well as examples related to beam-shell interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Wriggers P (2002) Computational contact mechanics. Wiley, West Sussex

    MATH  Google Scholar 

  2. Laursen TA (2003) Computational contact and impact mechanics fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

    MATH  Google Scholar 

  3. Francavilla A, Zienkiewicz O (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9:913–924

    Google Scholar 

  4. Stadter J, Weiss R (1979) Analysis of contact through finite element gaps. Comput Struct 10:867–873

    MATH  Google Scholar 

  5. Puso M (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59(3):315–336

    MathSciNet  MATH  Google Scholar 

  6. Puso M, Laursen T (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629

    MATH  Google Scholar 

  7. Konyukhov A, Schweizerhof K (2013) Computational contact mechanics. Springer, Berlin

    MATH  Google Scholar 

  8. Wriggers P, Van T, Stein E (1990) Finite-element-formulation of large deformation impact-contact -problems with friction. Comput Struct 37:319–333

    MATH  Google Scholar 

  9. Bathe K, Chaudhary A (1985) A solution method for planar and axisymmetric contact problems. Int J Numer Methods Eng 21:65–88

    MATH  Google Scholar 

  10. Zavarise G, De Lorenzis L (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79:379–416

    MATH  Google Scholar 

  11. Popp A, Seitz A, Gee M, Wall W (2013) A dual mortar approach for improved robustness and consistency of 3D contact algorithms. Comput Methods Appl Mech Eng 264:67–80

    MATH  Google Scholar 

  12. Temizer I, Wriggers P, Hughes TJ (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112

    MathSciNet  MATH  Google Scholar 

  13. Dias AP, Proenca SP, Bittencourt ML (2019) High-order mortar-based contact element using NURBS for the mapping of contact curved surfaces. Comput Mech 64(1):85–112

    MathSciNet  MATH  Google Scholar 

  14. Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric Analysis and thermomechanical Mortar contact problems. Comput Methods Appl Mech Eng 274:192–212

    MathSciNet  MATH  Google Scholar 

  15. Seitz A, Farah P, Kremheller J, Wohlmuth BI, Wall WA, Popp A (2016) Isogeometric dual mortar methods for computational contact mechanics. Comput Methods Appl Mech Eng 301:259–280

    MathSciNet  MATH  Google Scholar 

  16. Temizer I, Hesch C (2016) Hierarchical NURBS in frictionless contact. Comput Methods Appl Mech Eng 299:161–186

    MathSciNet  MATH  Google Scholar 

  17. Temizer I, Abdalla MM, Gürdal Z (2014) An interior point method for isogeometric contact. Comput Methods Appl Mech Eng 276:589–611

    MathSciNet  MATH  Google Scholar 

  18. Nishi S, Terada K, Temizer I (2019) Isogeometric analysis for numerical plate testing of dry woven fabrics involving frictional contact at meso-scale. Comput Mech 64:211–229

    MathSciNet  MATH  Google Scholar 

  19. Gay Neto A (2016) Dynamics of offshore risers using a geometrically-exact beam model with hydrodynamic loads and contact with the seabed. Eng Struct 125:438–454

    Google Scholar 

  20. Gay Neto A (2018) Computational modeling of pointwise contact between bodies: an integrated view. University of São Paulo, São Paulo

    Google Scholar 

  21. Gay Neto A, Wriggers P (2019) Computing pointwise contact between bodies: a class of formulations based on master–master approach. Comput Mech 64(3):585–609

    MathSciNet  MATH  Google Scholar 

  22. Gay Neto A, Pimenta P, Wriggers P (2017) A master-surface to master-surface formulation for beam to beam contact. part ii: frictional interaction. Comput Methods Appl Mech Eng 319:146–174

    MathSciNet  MATH  Google Scholar 

  23. Gay Neto A, Wriggers P (2020) Numerical method for solution of pointwise contact between surfaces. Comput Methods Appl Mech Eng 365(15):112971

    MathSciNet  MATH  Google Scholar 

  24. Pimenta P, Campello E (2001) Geometrically nonlinear analysis of thin-walled space frames. In: Proceedings of the second European conference on computational mechanics (ECCM). ECCOMAS, Krakow

  25. Luding S (2008) Introduction to discrete element methods. Eur J Environ Civil Eng 12(7–8):785–826

    Google Scholar 

  26. Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, Switzerland

    MATH  Google Scholar 

  27. Simo J, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions-A geometrically exact approach. Comput Methods Appl Mech Eng 66:125–161

    MathSciNet  MATH  Google Scholar 

  28. Simo J, Vu-Quoc L (1991) A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27(3):371–393

    MathSciNet  MATH  Google Scholar 

  29. Campello E, Pimenta P, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31:505–518

    MATH  Google Scholar 

  30. Campello E, Pimenta P, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational dofs and general hyperelasticity. Part 2: Shells. Comput Mech 48:195–211

    MathSciNet  MATH  Google Scholar 

  31. Ibrahimbegovic A, Mikdad M (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Numer Methods Eng 41:781–814

    MathSciNet  MATH  Google Scholar 

  32. Pimenta P, Campello E, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational dof’s and general hyperelasticity. part 1: rods. Comput Mech 42:715–732

    MathSciNet  MATH  Google Scholar 

  33. Wriggers P, Zavarise G (1997) On contact between three-dimensional beams undergoing large deflections. Commun Numer Methods Eng 13:429–438

    MathSciNet  MATH  Google Scholar 

  34. Zavarise G, Wriggers P (2000) Contact with friction between beams in 3-D space. Int J Numer Methods Eng 49:977–1006

    MATH  Google Scholar 

  35. Litewka P, Wriggers P (2002) Frictional contact between 3D beams. Comput Mech 28:26–39

    MATH  Google Scholar 

  36. Meier C, Popp A, Wall WA (2016) A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation. Comput Methods Appl Mech Eng 308:377–413

    MathSciNet  MATH  Google Scholar 

  37. Durville D (2012) Contact-friction modeling within elastic beam assemblies: an application to knot tightening. Comput Mech 49:687–707

    MathSciNet  MATH  Google Scholar 

  38. Meier C, Wall WA, Popp A (2017) A unified approach for beam-to-beam contact. Comput Methods Appl Mech Eng 315(1):972–1010

    MathSciNet  MATH  Google Scholar 

  39. Magliulo M, Zilian A, Beex L (2019) Contact between shear-deformable beams with elliptical cross-sections. Acta Mechanica, in press

  40. Wriggers P (2008) Contact between beams and shells. In: New trends in thin structures: formulation, optimization and coupled problems, Springer, pp 155–174

  41. Gay Neto A, Pimenta P, Wriggers P (2016) A master-surface to master-surface formulation for beam to beam contact. part i: frictionless interaction. Comput Methods Appl Mech Eng 303:400–429

    MathSciNet  MATH  Google Scholar 

  42. Ota N, Wilson L, Neto AG, Pellegrino S, Pimenta P (2016) Nonlinear dynamic analysis of creased shells. Finite Elem Anal Des 121:64–74

    MathSciNet  Google Scholar 

  43. Gay Neto A, Pimenta P, Wriggers P (2018) Contact between spheres and general surfaces. Comput Methods Appl Mech Eng 328:686–716

    MathSciNet  MATH  Google Scholar 

  44. Gay Neto A (2017) Giraffe user’s manual—generic interface readily accessible for finite elements. Retrieved from http://sites.poli.usp.br/p/alfredo.gay/giraffe.html

  45. de Campos P, Gay Neto A (2018) Rigid Body formulation in a finite element context with contact interaction. Comput Mech 62(6):1369–1398

    MathSciNet  MATH  Google Scholar 

  46. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  47. Johnson K (1985) Contact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  48. Gay Neto A, Pimenta P, Wriggers P (2014) Contact between rolling beams and flat surfaces. Int J Numer Methods Eng 97:683–706

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) under the Grant 304680/2018-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Gay Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gay Neto, A., Wriggers, P. Master-master frictional contact and applications for beam-shell interaction. Comput Mech 66, 1213–1235 (2020). https://doi.org/10.1007/s00466-020-01890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01890-6

Keywords

Navigation