Skip to main content
Log in

On generalized Holmgren’s principle to the Lamé operator with applications to inverse elastic problems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Consider the Lamé operator \({\mathcal {L}}({\mathbf {u}}) :=\mu \Delta {\mathbf {u}}+(\lambda +\mu ) \nabla (\nabla \cdot {\mathbf {u}} )\) that arises in the theory of linear elasticity. This paper studies the geometric properties of the (generalized) Lamé eigenfunction \({\mathbf {u}}\), namely \(-{\mathcal {L}}({\mathbf {u}})=\kappa {\mathbf {u}}\) with \(\kappa \in {\mathbb {R}}_+\) and \({\mathbf {u}}\in L^2(\Omega )^2\), \(\Omega \subset {\mathbb {R}}^2\). We introduce the so-called homogeneous line segments of \({\mathbf {u}}\) in \(\Omega \), on which \({\mathbf {u}}\), its traction or their combination via an impedance parameter is vanishing. We give a comprehensive study on characterizing the presence of one or two such line segments and its implication to the uniqueness of \({\mathbf {u}}\). The results can be regarded as generalizing the classical Holmgren’s uniqueness principle for the Lamé operator in two aspects. We establish the results by analyzing the development of analytic microlocal singularities of \({\mathbf {u}}\) with the presence of the aforesaid line segments. Finally, we apply the results to the inverse elastic problems in establishing two novel unique identifiability results. It is shown that a generalized impedance obstacle as well as its boundary impedance can be determined by using at most four far-field patterns. Unique determination by a minimal number of far-field patterns is a longstanding problem in inverse elastic scattering theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code availability

This is a theoretical work and there is no software application or custom code involved.

Availability of data material

This is a theoretical work and there are no data generated.

References

  1. Alessandrini, G., Rondi, L.: Determining a sound-soft polyhedral scatterer by a single far-field measurement. Proc. Am. Math. Soc. 35, 1685–1691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Abramowitz and I.  A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol. 55, Courier Corporation, 1964

  3. Cheng, J., Yamamoto, M.: Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves. Inverse Probl. 19, 1361–1384 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blåsten, E., Lin, Y.-H.: Radiating and non-radiating sources in elasticity. Inverse Probl. 35(1), 015005 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. X. Cao, H. Diao, H. Liu and J. Zou, On nodal and generalized singular structures of laplacian eigenfunctions and applications, J. Math. Pures Appl., in press, 2020

  6. X. Cao, H. Diao, H. Liu and J. Zou, On nodal and generalized singular structures of Laplacian eigenfunctions and applications in \({\mathbb{R}}^3\), arXiv:1909.10174, 2019

  7. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  8. Colton, D., Kress, R.: Looking back on inverse scattering theory. SIAM Rev. 60(40), 779–807 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dassios, G., Rigou, Z.: Elastic Herglotz functions. SIAM J. Appl. Math. 55, 1345–1361 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elschner, J., Yamamoto, M.: Uniqueness in inverse elastic scattering with finitely many incident waves. Inverse Probl. 26, 045005 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions, 2nd edn. Birkhäuser Boston Inc, Boston, MA (2002)

    Book  MATH  Google Scholar 

  12. Kupradze, V.D.: Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam (1979)

    Google Scholar 

  13. Lai, J., Liu, H., Xiao, J., Xu, Y.: Revisiting the decoupling of elastic waves from a weak formulation perspective. East Asian J. Appl. Math. 9(2), 241–251 (2019)

    Article  MathSciNet  Google Scholar 

  14. Li, J., Liu, H.: Recovering a polyhedral obstacle by a few backscattering measurements. J. Differ. Equ. 259, 2101–2120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J., Liu, H., Wang, Y.: Recovering an electromagnetic obstacle by a few phaseless backscattering measurements. Inverse Probl. 33, 035011 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, H.: On recovering polyhedral scatterers with acoustic far-field measurements. IMA J. Appl. Math 74, 264–272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, H.: A global uniqueness for formally determined inverse electromagnetic obstacle scattering. Inverse Probl. 24, 035018 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, H., Petrini, M., Rondi, L., Xiao, J., Luca: Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements. J. Differ. Equ. 262(3), 1631–1670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, H., Rondi, L., Xiao, J.: Mosco convergence for \(H(curl)\) spaces, higher integrability for Maxwell’s equations, and stability in direct and inverse EM scattering problems. J. Eur. Math. Soc. JEMS 21, 2945–2993 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Liu, H., Xiao, J.: Decoupling elastic waves and its applications. J. Differ. Equ. 265(8), 4442–4480 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, H., Yamamoto, M., Zou, J.: New reflection principles for Maxwell equations and their applications. Numer. Math. Theory Methods Appl. 2, 1–17 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Liu, H., Yamamoto, M., Zou, J.: Reflection principle for Maxwell’s equations and its application to inverse electromagnetic scattering problem. Inverse Probl. 23, 2357–2366 (2007)

    Article  MATH  Google Scholar 

  23. Liu, H., Zou, J.: Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Probl. 22, 515–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, H., Zou, J.: On unique determination of partially coated polyhedral scatterers with far field measurements. Inverse Probl. 23, 297–308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sevroglou, V., Pelekanos, G.: Two-dimensional elastic Herglotz functions and their application in inverse scattering. J. Elast. 68, 123–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Treves, F.: Introduction to Pseudodifferential and Fourier Integral Operators, vol. 1. Plenum Press, New York (1980)

    Book  MATH  Google Scholar 

Download references

Funding

The research of H Liu was supported by Hong Kong RGC GRF grants, No. 12301218, 12302919 and 12301420.

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contribute to this work.

Corresponding author

Correspondence to Huaian Diao.

Ethics declarations

Conflicts of interest

There are no conflicts of interest/competing interests to be declared.

Additional information

Communicated by J.Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 2.4

We first prove (2.18). Recall that \({\nu }\big |_{\Gamma _h^+}\) is defined in (2.8):

$$\begin{aligned} \varvec{\tau }=(-\cos \varphi _0,-\sin \varphi _0). \end{aligned}$$
(6.1)

Substituting (6.1) into (1.5) yields

$$\begin{aligned} \begin{aligned} T_{\nu } {\mathbf {u}}\Big |_{\Gamma ^+_h}&=2 \mu \left[ \begin{array}{cc} \partial _1 u_1 &{} \partial _2 u_1\\ \partial _1 u_2 &{} \partial _2 u_2\\ \end{array}\right] \left[ \begin{array}{c} -\sin \varphi _0\\ \cos \varphi _0\\ \end{array}\right] +\lambda \left[ \begin{array}{c} -\sin \varphi _0\\ \cos \varphi _0\\ \end{array}\right] \left( \partial _1 u_1+\partial _2 u_2\right) \\&\quad + \mu \left[ \begin{array}{c} -\cos \varphi _0\\ -\sin \varphi _0\\ \end{array}\right] \left( \partial _2 u_1-\partial _1 u_2\right) :=\left[ \begin{array}{c}{T_1 ({\mathbf {u}}) }\big |_{\Gamma _h^+ }\\ {T_2 ({\mathbf {u}}) }\big |_{\Gamma _h^+ }\end{array}\right] , \end{aligned} \end{aligned}$$
(6.2)

where

$$\begin{aligned} \begin{aligned} T_1( {\mathbf {u}})\big |_{\Gamma _h^+ }=&2\mu (-\sin \varphi _0 \partial _1 u_1+\cos \varphi _0 \partial _2 u_1 )\\&-\lambda \sin \varphi _0 (\partial _1 u_1+\partial _2 u_2 )-\mu \cos \varphi _0 (\partial _2 u_1-\partial _1 u_2 ) , \\ T_2 ({\mathbf {u}})\big |_{\Gamma _h^+ }=&2\mu (-\sin \varphi _0 \partial _1 u_2+\cos \varphi _0 \partial _2 u_2 )\\&-\lambda \cos \varphi _0 (\partial _1 u_1+\partial _2 u_2 )-\mu \sin \varphi _0 (\partial _2 u_1-\partial _1 u_2 ). \end{aligned} \end{aligned}$$

Using (2.17), it is readily shown that

$$\begin{aligned} \begin{aligned} \frac{\partial u_1}{\partial r}&= \sum _{m=0} ^\infty \left\{ \frac{k_p^2}{4}a_m \left\{ \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}\left( k_p r\right) - \left[ \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi }+\mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi }\right] J_m \left( k_p r\right) \right\} \right. \\&\quad + \frac{{\mathrm {i}}k_s^2}{4}b_m \left\{ \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}\left( k_s r\right) - \left[ \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi }-\mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi }\right] J_m \left( k_s r\right) \right\} \\&\quad + \frac{k_p^2}{4}a_m \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+2} \left( k_p r\right) -\frac{{\mathrm {i}}k_s^2}{4}b_m \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+2} \left( k_s r\right) \bigg \},\\ \frac{\partial u_1}{\partial \varphi }&= \sum _{m=0} ^\infty \left\{ \frac{{\mathrm {i}}\left( m-1\right) }{2} k_p \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-1} \left( k_p r\right) a_m - \frac{{\mathrm {i}}\left( m+1\right) }{2} k_p \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+1} \left( k_p r\right) a_m \right. \\&\quad - \frac{\left( m-1\right) }{2} k_s \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-1} \left( k_s r\right) b_m - \frac{\left( m+1\right) }{2} k_s \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+1} \left( k_s r\right) b_m\bigg \}, \end{aligned} \end{aligned}$$
(6.3)

and

$$\begin{aligned} \frac{\partial u_2}{\partial r}&= \sum _{m=0} ^\infty \left\{ \frac{{\mathrm {i}}k_p^2}{4}a_m \left\{ \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}\left( k_p r\right) - \left[ \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi }-\mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi }\right] J_m \left( k_p r\right) \right\} \right. \nonumber \\&\quad + \frac{k_s^2}{4}b_m \left\{ -\mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}\left( k_s r\right) + \left[ \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi }+\mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi }\right] J_m \left( k_s r\right) \right\} \nonumber \\&\quad - \frac{{\mathrm {i}}k_p^2}{4}a_m \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+2} \left( k_p r\right) -\frac{k_s^2}{4} b_m \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+2} \left( k_s r\right) \bigg \},\end{aligned}$$
(6.4)
$$\begin{aligned} \frac{\partial u_2}{\partial \varphi }&= \sum _{m=0} ^\infty \left\{ -\frac{\left( m-1\right) }{2} k_p \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-1} \left( k_p r\right) a_m - \frac{\left( m+1\right) }{2} k_p \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+1} \left( k_p r\right) a_m \right. \nonumber \\&\quad - \frac{{\mathrm {i}}\left( m-1\right) }{2} k_s \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-1} \left( k_s r\right) b_m \nonumber \\&\quad + \frac{{\mathrm {i}}\left( m+1\right) }{2} k_s \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+1} \left( k_s r\right) b_m\bigg \}. \end{aligned}$$
(6.5)

Using the fact that

$$\begin{aligned} \begin{aligned} \frac{\partial u_i}{\partial x_1}&=\cos \varphi \cdot \frac{\partial u_i}{\partial r}- \frac{\sin \varphi }{r} \cdot \frac{\partial u_i}{\partial \varphi },\quad \frac{\partial u_i}{\partial x_2}=\sin \varphi \cdot \frac{\partial u_i}{\partial r}+ \frac{\cos \varphi }{r} \cdot \frac{\partial u_i}{\partial \varphi }, \end{aligned} i=1,2, \end{aligned}$$
(6.6)

as well as (6.3) and (6.4), by tedious but straightforward calculations, one can obtain that

$$\begin{aligned}&\partial _1 u_1 \cdot \left( -\sin \varphi _0\right) +\partial _2 u_1 \cdot \left( \cos \varphi _0\right) \nonumber \\&\quad = \sum _{m=0} ^\infty \Bigg \{ \sin (\varphi -\varphi _0) \Big [\frac{k_p^2}{4} a_m \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}(k_p r) \nonumber \\&\qquad - \frac{k_p^2}{4} a_m J_m(k_p r)\left( \mathrm {e}^{{\mathrm {i}}(m-1)\varphi }+\mathrm {e}^{{\mathrm {i}}(m+1)\varphi }\right) \nonumber \\&\qquad + \frac{k_p^2}{4} a_m \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+2}(k_p r) + \frac{{\mathrm {i}}k_s^2}{4} b_m \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}(k_s r) \nonumber \\&\qquad - \frac{{\mathrm {i}}k_s^2}{4} b_m J_m(k_s r)\left( \mathrm {e}^{{\mathrm {i}}(m-1)\varphi }-\mathrm {e}^{{\mathrm {i}}(m+1)\varphi }\right) - \frac{{\mathrm {i}}k_s^2}{4} b_m \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+2}(k_s r) \Big ] \nonumber \\&\qquad + \frac{ \cos (\varphi -\varphi ) }{r} \Big [\frac{{\mathrm {i}}(m-1)k_p}{2} a_m \mathrm {e}^{{\mathrm {i}}(m-1)\varphi } J_{m-1}(k_p r) \nonumber \\&\qquad - \frac{{\mathrm {i}}(m+1)k_p}{2} a_m \mathrm {e}^{{\mathrm {i}}(m+1)\varphi } J_{m+1}(k_p r) - \frac{(m-1)k_s}{2} b_m \mathrm {e}^{{\mathrm {i}}(m-1)\varphi } J_{m-1}(k_s r)\nonumber \\&\qquad - \frac{(m+1)k_s}{2} b_m \mathrm {e}^{{\mathrm {i}}(m+1)\varphi } J_{m+1}(k_s r) \Big ] \Bigg \},\nonumber \\&\partial _1 u_2 \cdot \left( -\sin \varphi _0\right) +\partial _2 u_2 \cdot \left( \cos \varphi _0\right) \nonumber \\&\quad = \sum _{m=0} ^\infty \Bigg \{ \sin (\varphi -\varphi _0 ) \Big [ \frac{{\mathrm {i}}k_p^2}{4} a_m \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}(k_p r) \nonumber \\&\qquad - \frac{{\mathrm {i}}k_p^2}{4} a_m J_m(k_p r)\left( \mathrm {e}^{{\mathrm {i}}(m-1)\varphi }-\mathrm {e}^{{\mathrm {i}}(m+1)\varphi }\right) \nonumber \\&\qquad - \frac{{\mathrm {i}}k_p^2}{4} a_m \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+2}(k_p r) - \frac{ k_s^2}{4} b_m \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}(k_s r) \nonumber \\&\qquad + \frac{ k_s^2}{4} b_m J_m(k_s r)\left( \mathrm {e}^{{\mathrm {i}}(m-1)\varphi }+\mathrm {e}^{{\mathrm {i}}(m+1)\varphi }\right) \nonumber \\&\qquad -\frac{ k_s^2}{4} b_m \mathrm {e}^{{\mathrm {i}}\left( m+1\right) \varphi } J_{m+2}(k_s r) \Big ] + \frac{\cos (\varphi -\varphi _0)}{r} \Big [ \frac{-(m-1)k_p}{2} a_m \mathrm {e}^{{\mathrm {i}}(m-1)\varphi } J_{m-1}(k_p r) \nonumber \\&\qquad - \frac{(m+1)k_p}{2} a_m \mathrm {e}^{{\mathrm {i}}(m+1)\varphi } J_{m+1}(k_p r) - \frac{{\mathrm {i}}(m-1)k_s}{2} b_m \mathrm {e}^{{\mathrm {i}}(m-1)\varphi } J_{m-1}(k_s r)\nonumber \\&\qquad + \frac{{\mathrm {i}}(m+1)k_s}{2} b_m \mathrm {e}^{{\mathrm {i}}(m+1)\varphi } J_{m+1}(k_s r) \Big ] \Bigg \}. \end{aligned}$$
(6.7)

Similarly, from (6.3) and (6.4), we have

$$\begin{aligned} \partial _1 u_1 +\partial _2 u_2= & {} \sum _{m=0} ^\infty \Bigg \{ \frac{k_p^2}{4} \mathrm {e}^{{\mathrm {i}}m \varphi } a_m \left( J_{m-2} \left( k_p r\right) -2 J_m \left( k_p r\right) + J_{m+2} \left( k_p r\right) \right) \nonumber \\&+\frac{{\mathrm {i}}k_s^2}{4} \mathrm {e}^{{\mathrm {i}}m \varphi } b_m \left( J_{m-2} \left( k_s r\right) -J_{m+2} \left( k_s r\right) \right) \nonumber \\&+ \frac{1}{r} \bigg [ -\frac{k_p}{2}\mathrm {e}^{{\mathrm {i}}m \varphi } a_m \big ( \left( m-1\right) J_{m-1} \left( k_p r\right) \nonumber \\&+\left( m+1\right) J_{m+1} \left( k_p r\right) \big ) \nonumber \\&- \frac{{\mathrm {i}}k_s}{2}\mathrm {e}^{{\mathrm {i}}m \varphi } b_m \left( \left( m-1\right) J_{m-1} \left( k_s r\right) -\left( m+1\right) J_{m+1} \left( k_s r\right) \right) \bigg ]\Bigg \}, \end{aligned}$$
(6.8)

and

$$\begin{aligned} \begin{aligned} \partial _2 u_1-\partial _1 u_2 =&\sum _{m=0} ^\infty \Bigg \{\frac{{\mathrm {i}}k_p^2}{4} \mathrm {e}^{{\mathrm {i}}m \varphi } a_m \left( -J_{m-2} \left( k_p r\right) +J_{m+2} \left( k_p r\right) \right) \\&+\frac{k_s^2}{4} \mathrm {e}^{{\mathrm {i}}m \varphi } b_m \left( J_{m-2} \left( k_s r\right) -2 J_m \left( k_s r\right) +J_{m+2} \left( k_s r\right) \right) \\&+ \frac{1}{r} \bigg [ \frac{{\mathrm {i}}k_p}{2}\mathrm {e}^{{\mathrm {i}}m \varphi } a_m \bigg ( \left( m-1\right) J_{m-1} \left( k_p r\right) \\&-\left( m+1\right) J_{m+1} \left( k_p r\right) \bigg ) - \frac{k_s}{2}\mathrm {e}^{{\mathrm {i}}m \varphi } b_m \left( \left( m-1\right) J_{m-1} \left( k_s r\right) \right. \\&\left. +\left( m+1\right) J_{m+1} \left( k_s r\right) \right) \bigg ] \Bigg \}. \end{aligned} \end{aligned}$$
(6.9)

Plugging (6.7)–(6.9) into (6.2), after tedious but straightforward calculations, we have

$$\begin{aligned} \begin{aligned}&T_1({\mathbf {u}})\big |_{\Gamma _h^+ }\\&\quad = \sum _{m=0} ^\infty \left\{ \frac{k_p^2}{4} a_m \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}(k_p r) \left[ 2 \mu \sin (\varphi -\varphi _0)\right. \right. \\&\qquad \left. \left. -\lambda \mathrm {e}^{{\mathrm {i}}\varphi } \sin \varphi _0 +{\mathrm {i}}\mu \mathrm {e}^{{\mathrm {i}}\varphi } \cos \varphi _0\right] \right. \\&\qquad + \frac{k_p^2}{2} a_m \mathrm {e}^{{\mathrm {i}}m \varphi } J_m(k_p r)\left[ \lambda \sin \varphi _0+2 \mu \cos \varphi \sin (\varphi _0-\varphi )\right] \\&\qquad + \frac{k_p^2}{4} a_m \mathrm {e}^{{\mathrm {i}}m \varphi } J_{m+2}(k_p r) \left[ 2 \mu \mathrm {e}^{{\mathrm {i}}\varphi } \sin (\varphi -\varphi _0) - \lambda \sin \varphi _0 - {\mathrm {i}}\mu \cos \varphi _0 \right] \\&\qquad + \frac{{\mathrm {i}}k_s^2}{4} b_m \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}(k_s r) \left[ 2 \mu \sin (\varphi -\varphi _0)-\lambda \mathrm {e}^{{\mathrm {i}}\varphi } \sin \varphi _0 +{\mathrm {i}}\mu \mathrm {e}^{{\mathrm {i}}\varphi } \cos \varphi _0\right] \\&\qquad + \frac{ k_s^2}{2} b_m \mathrm {e}^{{\mathrm {i}}m\varphi } J_m(k_s r)\left[ \mu \cos \varphi _0+2 \mu \sin \varphi \sin (\varphi _0-\varphi )\right] \\&\qquad + \frac{{\mathrm {i}}k_s^2}{4} b_m \mathrm {e}^{{\mathrm {i}}m \varphi } J_{m+2}(k_s r) \left[ 2 \mu \mathrm {e}^{{\mathrm {i}}\varphi } \sin (\varphi _0-\varphi ) + \lambda \sin \varphi _0 + {\mathrm {i}}\mu \cos \varphi _0\right] \\&\qquad + \frac{1}{r} \left\{ \frac{(m-1)k_p}{2} a_m \mathrm {e}^{{\mathrm {i}}(m-1)\varphi } J_{m-1}(k_p r)\left[ 2 {\mathrm {i}}\mu \cos (\varphi _0-\varphi ) + \lambda \mathrm {e}^{{\mathrm {i}}\varphi } \sin \varphi _0 - {\mathrm {i}}\mu \mathrm {e}^{{\mathrm {i}}\varphi } \cos \varphi _0\right] \right. \\&\qquad + \frac{(m+1)k_p}{2} a_m \mathrm {e}^{{\mathrm {i}}m \varphi } J_{m+1}(k_p r)\left[ -2 {\mathrm {i}}\mu \mathrm {e}^{{\mathrm {i}}\varphi } \cos (\varphi _0-\varphi ) + \lambda \sin \varphi _0 + {\mathrm {i}}\mu \cos \varphi _0\right] \\&\qquad + \frac{(m-1)k_s}{2} b_m \mathrm {e}^{{\mathrm {i}}(m-1)\varphi } J_{m-1}(k_s r)\left[ -2 \mu \cos (\varphi _0-\varphi ) + {\mathrm {i}}\lambda \mathrm {e}^{{\mathrm {i}}\varphi } \sin \varphi _0 + \mu \mathrm {e}^{{\mathrm {i}}\varphi } \cos \varphi _0\right] \\&\qquad + \frac{(m+1)k_s}{2} b_m \mathrm {e}^{{\mathrm {i}}m\varphi } J_{m+1}(k_s r) \left[ -2 \mu \mathrm {e}^{{\mathrm {i}}\varphi } \cos (\varphi _0-\varphi ) - {\mathrm {i}}\lambda \sin \varphi _0 + \mu \cos \varphi _0\right] \bigg \}\bigg \}. \end{aligned} \end{aligned}$$
(6.10)

Substituting (2.13) into (6.10), we can obtain that

$$\begin{aligned} \begin{aligned} T_1( {\mathbf {u}})\big |_{\Gamma _h^+ } =&\sum _{m=0} ^\infty \bigg \{ \frac{{\mathrm {i}}k_p^2}{2} a_m \mathrm {e}^{{\mathrm {i}}(m-1) \varphi } \mathrm {e}^{-{\mathrm {i}}(\varphi -\varphi _0)} \mu J_{m-2} \left( k_p r\right) \\&+ k_p^2 a_m \mathrm {e}^{{\mathrm {i}}m \varphi } \left( \lambda +\mu \right) \sin \varphi _0 J_m \left( k_p r\right) \\&-\frac{{\mathrm {i}}k_p^2}{2} a_m \mathrm {e}^{{\mathrm {i}}(m+1) \varphi } \mathrm {e}^{{\mathrm {i}}(\varphi -\varphi _0)} \mu J_{m+2} -\frac{k_s^2}{2} b_m \mathrm {e}^{{\mathrm {i}}(m-1) \varphi } \mathrm {e}^{-{\mathrm {i}}(\varphi -\varphi _0)} \mu J_{m-2} \left( k_s r\right) \\&-\frac{k_s^2}{2} b_m \mathrm {e}^{{\mathrm {i}}(m+1) \varphi } \mathrm {e}^{{\mathrm {i}}(\varphi -\varphi _0)} \mu J_{m+2} \left( k_s r\right) \bigg \}. \end{aligned} \end{aligned}$$
(6.11)

Similarly, substituting (6.7) to (6.9) into (6.2), after tedious but straightforward calculations, we have

$$\begin{aligned} \begin{aligned}&T_2({\mathbf {u}} )\big |_{\Gamma _h^+ }\\&\quad = \sum _{m=0} ^\infty \left\{ \frac{k_p^2}{4} a_m \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}(k_p r) \left[ 2 {\mathrm {i}}\mu \sin (\varphi -\varphi _0)\right. \right. \\&\left. \left. \qquad +\lambda \mathrm {e}^{{\mathrm {i}}\varphi } \cos \varphi _0 +{\mathrm {i}}\mu \mathrm {e}^{{\mathrm {i}}\varphi } \sin \varphi _0\right] \right. \\&\qquad + \frac{k_p^2}{2} a_m \mathrm {e}^{{\mathrm {i}}m \varphi } J_m(k_p r)\left[ -\lambda \cos \varphi _0+2 \mu \sin \varphi \sin (\varphi _0-\varphi )\right] \\&\qquad + \frac{k_p^2}{4} a_m \mathrm {e}^{{\mathrm {i}}m \varphi } J_{m+2}(k_p r) \left[ 2 {\mathrm {i}}\mu \mathrm {e}^{{\mathrm {i}}\varphi } \sin (\varphi _0-\varphi ) + \lambda \cos \varphi _0 - {\mathrm {i}}\mu \sin \varphi _0 \right] \\&\qquad + \frac{ k_s^2}{4} b_m \mathrm {e}^{{\mathrm {i}}\left( m-1\right) \varphi } J_{m-2}(k_s r) \left[ 2 \mu \sin (\varphi _0-\varphi )+ {\mathrm {i}}\lambda \mathrm {e}^{{\mathrm {i}}\varphi } \cos \varphi _0 - \mu \mathrm {e}^{{\mathrm {i}}\varphi } \sin \varphi _0\right] \\&\qquad + \frac{ k_s^2}{2} b_m \mathrm {e}^{{\mathrm {i}}m\varphi } J_m(k_s r)\left[ \mu \sin \varphi _0+2 \mu \cos \varphi \sin (\varphi -\varphi _0)\right] \\&\qquad + \frac{ k_s^2}{4} b_m \mathrm {e}^{{\mathrm {i}}m \varphi } J_{m+2}(k_s r) \left[ 2 \mu \mathrm {e}^{{\mathrm {i}}\varphi } \sin (\varphi _0-\varphi ) -{\mathrm {i}}\lambda \cos \varphi _0 - \mu \sin \varphi _0\right] \\&\qquad + \frac{1}{r} \left\{ -\frac{(m-1)k_p}{2} a_m \mathrm {e}^{{\mathrm {i}}(m-1)\varphi } J_{m-1}(k_p r)\right. \\&\left. \qquad \left[ 2 \mu \cos (\varphi _0-\varphi ) + \lambda \mathrm {e}^{{\mathrm {i}}\varphi } \cos \varphi _0 + {\mathrm {i}}\mu \mathrm {e}^{{\mathrm {i}}\varphi } \sin \varphi _0\right] \right. \\&\qquad + \frac{(m+1)k_p}{2} a_m \mathrm {e}^{{\mathrm {i}}m \varphi } J_{m+1}(k_p r)\left[ -2 \mu \mathrm {e}^{{\mathrm {i}}\varphi } \cos (\varphi _0-\varphi ) - \lambda \cos \varphi _0 + {\mathrm {i}}\mu \sin \varphi _0\right] \\&\qquad + \frac{(m-1)k_s}{2} b_m \mathrm {e}^{{\mathrm {i}}(m-1)\varphi } J_{m-1}(k_s r)\left[ -2 {\mathrm {i}}\mu \cos (\varphi _0-\varphi ) - {\mathrm {i}}\lambda \mathrm {e}^{{\mathrm {i}}\varphi } \cos \varphi _0 + \mu \mathrm {e}^{{\mathrm {i}}\varphi } \sin \varphi _0\right] \\&\qquad + \frac{(m+1)k_s}{2} b_m \mathrm {e}^{{\mathrm {i}}m\varphi } J_{m+1}(k_s r) \left[ 2 {\mathrm {i}}\mu \mathrm {e}^{{\mathrm {i}}\varphi } \cos (\varphi _0-\varphi ) + {\mathrm {i}}\lambda \cos \varphi _0 + \mu \sin \varphi _0\right] \bigg \}\bigg \}, \end{aligned} \end{aligned}$$
(6.12)

Plugging (2.13) into (6.12), we can obtain that

$$\begin{aligned} \begin{aligned} T_2( {\mathbf {u}})\big |_{\Gamma _h^+ } =&\sum _{m=0} ^\infty \left\{ - \frac{ k_p^2}{2} a_m \mathrm {e}^{{\mathrm {i}}(m-1) \varphi } \mathrm {e}^{-{\mathrm {i}}(\varphi -\varphi _0)} \mu J_{m-2} \left( k_p r\right) \right. \\&\left. - k_p^2 a_m \mathrm {e}^{{\mathrm {i}}m \varphi } \left( \lambda +\mu \right) \cos \varphi _0 J_m \left( k_p r\right) \right. \\&-\frac{ k_p^2}{2} a_m \mathrm {e}^{{\mathrm {i}}(m+1) \varphi } \mathrm {e}^{{\mathrm {i}}(\varphi -\varphi _0)} \mu J_{m+2}(k_p r)\\&-\frac{{\mathrm {i}}k_s^2}{2} b_m \mathrm {e}^{{\mathrm {i}}(m-1) \varphi } \mathrm {e}^{-{\mathrm {i}}(\varphi -\varphi _0)} \mu J_{m-2} \left( k_s r\right) \\&+\frac{{\mathrm {i}}k_s^2}{2} b_m \mathrm {e}^{{\mathrm {i}}(m+1) \varphi } \mathrm {e}^{{\mathrm {i}}(\varphi -\varphi _0)} \mu J_{m+2} \left( k_s r\right) \bigg \}. \end{aligned} \end{aligned}$$
(6.13)

Using the fact

$$\begin{aligned} \left[ \begin{array}{c}{\sin \varphi }\\ {-\cos \varphi }\end{array}\right] =\frac{{\mathrm {i}}}{2}\left( \mathrm {e}^{-{\mathrm {i}}\varphi }{\mathbf {e}}_1-\mathrm {e}^{{\mathrm {i}}\varphi }{\mathbf {e}}_2\right) , \end{aligned}$$

substituting (6.11) and (6.13) into (6.2), we can prove (2.18). The proof of (2.19) is similar to (2.18), which is omitted here. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, H., Liu, H. & Wang, L. On generalized Holmgren’s principle to the Lamé operator with applications to inverse elastic problems. Calc. Var. 59, 179 (2020). https://doi.org/10.1007/s00526-020-01830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01830-5

Mathematics Subject Classification

Navigation