Skip to main content
Log in

Efficient photocatalytic degradation of crystal violet by using graphene oxide/nickel sulphide nanocomposites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study aims to develop the graphene oxide-based metal sulphide nanocomposite, which has outstanding photocatalytic properties. The graphene oxide (GO) was prepared by the Hummers method, and GO/nickel sulphide (GO/NiS) nanocomposite was synthesized by the hydrothermal method to evaluate the photocatalytic dye degradation. The synthesized nanocomposites were characterized by X-ray diffraction, Fourier transform infrared, ultraviolet–visible, scanning electron microscopy with energy-dispersive X-ray and transmission electron microscopy techniques. Photocatalytic dye degradation efficiency of GO, NiS and GO/NiS nanocomposites were evaluated by using crystal violet (CV) dye. The GO/NiS nanocomposite exhibited good photocatalytic activity as compared to NiS as well as GO. The optimum condition obtained for the effective photocatalytic degradation of CV is pH = 8.0, crystal violet = 2.0 × 10−5 M, nanocomposite = 0.30 g. The rate of degradation of CV with the composite was found to be 2.39 × 10−4 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Armaroli N and Balzani V 2007 Angew. Chem. Int. Ed. Engl. 46 52

    Article  CAS  Google Scholar 

  2. Barber J 2009 Chem. Soc. Rev. 38 185

    Article  CAS  Google Scholar 

  3. Cook D K, Dogutan S Y, Reece Y, Surendra Nath T S and Teets D G 2010 Chem. Rev. 110 6474

    Article  CAS  Google Scholar 

  4. Eisenberg R and Nocera D G 2005 Inorg. Chem. 44 6799

    Article  CAS  Google Scholar 

  5. Chow J, Kopp R J and Portney P R 2003 Science 302 1528

    Article  Google Scholar 

  6. Li X, Yu J, Low J, Fang Y, Xiao J and Chen J 2015 J. Mater. Chem. A3 2485

    Article  Google Scholar 

  7. Wang M, Han K, Zhang S and Sun L 2015 Chem. Rev. 287 1

    CAS  Google Scholar 

  8. Trincado M, Banerjee D and Grützmacher H 2014 Energy Environ. Sci. 7 2464

    Article  CAS  Google Scholar 

  9. Anwer H, Mahmood A, Lee J, Kim K H, Park J W and Yip A C 2019 Nano Res. 12 955

    Article  CAS  Google Scholar 

  10. Olivas A, Cruz-Reyes J, Petranovskii V, Avalos M and Fuentes S 1998 J. Vacuum Sci. Technol. A 16 3515

    Article  CAS  Google Scholar 

  11. Salavati-Niasari M, Banaiean-Monfared G, Emadi H and Enhessari M 2013 C. R. Chim. 16 929

    Article  CAS  Google Scholar 

  12. Gaikar P, Pawar S P, Mane R S, Naushad M and Shinde D V 2016 RSC Adv. 6 112589

    Article  CAS  Google Scholar 

  13. Kang J, Ryu I, Choe G, Kim G and Yim S 2017 Int. J. Electrochem. Sci. 12 9588

    Article  CAS  Google Scholar 

  14. Ajibade P A and Nqombolo A 2016 Chalcogenide Lett. 13 427

    CAS  Google Scholar 

  15. Banerjee M, Chongad L and Sharma A 2013 Res. J. Recent Sci. 2 326

    Google Scholar 

  16. Fazli Y, Pourmortazavi S M, Kohsari I, Karimi M S and Tajdari M 2016 J. Mater. Sci.: Mater. Electron. 27 7192

    CAS  Google Scholar 

  17. Muhamed Shajudheen V P, Kumar S, Anitha Rani K, Uma Maheswari A and Kumar S 2016 Int. J. Innov. Res. Sci. Eng. Technol. 8 15099

    Google Scholar 

  18. Yang X, Zhou L, Feng A, Tang H, Zhang H, Ding Z et al 2014 J. Mater. Res. Technol. 29 935

    Article  CAS  Google Scholar 

  19. Hepp A F, Kulis M J, McNatt J S, Duffy N V, Hoops M D, Gorse E et al 2016 NASA/TM—2016-219140

  20. Wang A, Wang H, Zhang S, Mao C, Song J, Niu H et al 2013 Appl. Surf. Sci. 282 704

    Article  CAS  Google Scholar 

  21. Chen W, Yan L and Bangal P R 2010 J. Phys. Chem. C 114 19885

    Article  CAS  Google Scholar 

  22. Zhang D, Sun W, Zhang Y, Dou Y, Jiang Y and Dou S X 2016 Adv. Funct. Mater. 26 7479

    Article  CAS  Google Scholar 

  23. Babu K J, Raj Kumar T, Yoo D J, Phang S M and Gnana Kumar G 2018 ACS Sustain. Chem. Eng. 6 16982

    Article  CAS  Google Scholar 

  24. You B and Sun Y 2016 Adv. Energy Mater. 6 1502333

    Article  Google Scholar 

  25. Liu J, Bai H, Wang Y, Liu Z, Zhang X and Sun D 2010 Adv. Funct. Mater. 20 4175

    Article  CAS  Google Scholar 

  26. Min S and Lu G 2011 J. Phys. Chem. C 115 13938

    Article  CAS  Google Scholar 

  27. Gultom N S, Abdullah H, Kuo D H, Simamora P and Sirait M 2019 J. Phys. Conf. Ser. 1230 012102

    Article  CAS  Google Scholar 

  28. Chen F, Zou X, Chen C, Hu Q, Wei Y, Wang Y et al 2019 Ceram. Int. 45 14376

    Article  CAS  Google Scholar 

  29. Jiang L, Wang K, Wu X, Zhang G and Yin S 2019 ACS Appl. Mater. Inter. 11 26898

    Article  CAS  Google Scholar 

  30. Zhao J, Wang J, Wu G, Kim M, Song X and Huang J 2020 Mater. Chem. Phys. 240 122132

    Article  CAS  Google Scholar 

  31. Reddy B J, Vickerman P and Justin A S 2019 J. Mater. Sci. 54 6361

    Article  CAS  Google Scholar 

  32. Xing Z, Chu Q, Ren X, Tian J, Asiri A M, Alamry K A et al 2013 Electrochem. Commun. 32 9

    Article  CAS  Google Scholar 

  33. Zhuoqun Li, Feng Gong, Gang Zhou and Zhong-Sheng Wang 2013 J. Phys. Chem. C 117 6561

    Article  CAS  Google Scholar 

  34. Shen Ma L, Wang X, Ji Z S, Zhou H and Zhu G 2014 Electrochim. Acta 146 525

    Article  Google Scholar 

  35. Zhang Z, Zhao C, Min S and Qian X 2014 Electrochim. Acta 144 100

    Article  CAS  Google Scholar 

  36. Zhang Z, Liu X, Qi X, Huang Z, Ren L and Zhong J 2014 RSC Adv. 4 37278

    Article  CAS  Google Scholar 

  37. Cai X, Shen X, Ji Z, Sheng X and Kong L 2017 Chem. Eng. J. 308 184

    Article  CAS  Google Scholar 

  38. Sarkar A, Chakraborty A K and Bera S 2018 Sol. Energy Mater. Sol. Cells 182 314

    Article  CAS  Google Scholar 

  39. Ghosh D and Das C K 2015 ACS Appl. Mater. Int. 7 1122

    Article  CAS  Google Scholar 

  40. Cao S, Chen Y, Wang C J, He P and Fu W F 2014 Chem. Commun. 50 10427

    Article  CAS  Google Scholar 

  41. Chen X, Chen W, Gao H, Yang Y and Shangguan W 2014 Appl. Catal. B: Environ. 152 68

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuppusamy Krishnasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, V., Elancheran, R., Revathi, P. et al. Efficient photocatalytic degradation of crystal violet by using graphene oxide/nickel sulphide nanocomposites. Bull Mater Sci 43, 265 (2020). https://doi.org/10.1007/s12034-020-02227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02227-y

Keywords

Navigation