Skip to main content

Advertisement

Log in

Key parameters optimization of chitosan production from Aspergillus terreus using apple waste extract as sole carbon source

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Chitosan is commonly obtained from shrimp and crab shell chitin by deacetylation; however, such supplies appear limitation. An alternative source of chitosan is cell wall in certain fungi. In this study, chitosan production through submerged fermentation of Aspergillus terreus on apple waste extract as sole carbon source was investigated. Monod equation with a maximum specific growth rate of 0.083 h−1 and half-saturation constant of 6.67 w/v% was best described the kinetic of growth. Results of response surface methodology showed the highest chitosan to substrate yield of 49.32 mg gsubstrate−1, chitosan to fungal biomass yield of 140.9 mg gcell−1, and fungal biomass to substrate yield of 0.387 gcell gsubstrate−1 were simultaneously obtained at temperature 30.0 °C, initial pH 5.98, and ammonium nitrate concentration 5.0 g L−1. The chitosan produced at the optimum condition was characterized by FTIR, TGA, and DSC analysis, and degree of deacetylation was 88.2%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Maghsoodi V, Yaghmaei S (2010) Comparison of solid substrate and submerged fermentation for chitosan production by Aspergillus niger. Chem Chem Eng 17:153–157

    CAS  Google Scholar 

  2. Kanatt SR, Chander R, Sharma A (2008) Chitosan and mint mixture: a new preservative for meat and meat products. Food Chem 107:845–852

    Article  CAS  Google Scholar 

  3. Sagoo S, Board R, Roller S (2002) Chitosan inhibits growth of spoilage micro-organisms in chilled pork products. Food Microbiol 19:175–182

    Article  CAS  Google Scholar 

  4. Khwaldia K, Arab-Tehrany E, Desobry S (2010) Biopolymer coatings on paper packaging materials. Compr Rev Food Sci Food Saf 9:82–91

    Article  CAS  Google Scholar 

  5. Dutta PK, Duta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  6. Logesh A, Thillaimaharani K, Sharmila K, Kalaiselvam M, Raffi S (2012) Production of chitosan from endolichenic fungi isolated from mangrove environment and its antagonistic activity. Asian Pac J Trop Biomed 2:140–143

    Article  CAS  Google Scholar 

  7. Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104:1415–1421

    Article  CAS  Google Scholar 

  8. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447

    Article  CAS  Google Scholar 

  9. Schleuter D, Günther A, Paasch S, Ehrlich H, Kljajić Z, Hanke T, Bernhard G, Brunner E (2013) Chitin-based renewable materials from marine sponges for uranium adsorption. Carbohydr Polym 92:712–718

    Article  CAS  Google Scholar 

  10. Pochanavanich P, Suntornsuk W (2002) Fungal chitosan production and its characterization. Lett Appl Microbiol 35:17–21

    Article  CAS  Google Scholar 

  11. Nwe N, Stevens WF (2002) Production of fungal chitosan by solid substrate fermentation followed by enzymatic extraction. Biotechnol Lett 24:131–134

    Article  CAS  Google Scholar 

  12. Hu KJ, Yeung KW, Ho KP, Hu JL (1999) Rapid extraction of high-quality chitosan from mycelia of Absidia glauca. J Food Biochem 23:187–196

    Article  CAS  Google Scholar 

  13. Miyoshi H, Shimura K, Watanabe K, Onodera K (1992) Characterization of some fungal chitosans. Biosci Biotechnol Biochem 56:1901–1905

    Article  CAS  Google Scholar 

  14. Kheng PP, Omar IC (2005) Xylanase production by a local fungal isolate, Aspergillus niger USM AI 1 via solid state fermentation using palm kernel cake (PKC) as substrate. Songklanakarin J Sci Technol 27:325–336

    CAS  Google Scholar 

  15. Maghsoodi V (2008) Influence of different nitrogen sources on amount of chitosan production by Aspergillus niger in solid state fermentation. Iran J Chem Chem Eng 27:47–52

    CAS  Google Scholar 

  16. White SA, Farina PR, Fulton I (1979) Production and isolation of chitosan from Mucor rouxii. Appl Environ Microbiol 38:323–328

    Article  CAS  Google Scholar 

  17. Streit F, Koch F, Laranjeira MCM, Ninow JL (2009) Production of fungal chitosan in liquid cultivation using apple pomace as substrate. Braz J Microbiol 40:20–25

    Article  CAS  Google Scholar 

  18. Crestini C, Kovac B, Giovannozzi-Sermanni G (1996) Production and isolation of chitosan by submerged and solid-state fermentation from Lentinus edodes. Biotechnol Bioeng 50:207–210

    Article  CAS  Google Scholar 

  19. Tan SC, Tan TK, Wong SM, Khor E (1996) The chitosan yield of zygomycetes at their optimum harvesting time. Carbohydr Polym 30:239–242

    Article  CAS  Google Scholar 

  20. Dhillon GS, Kaur S, Brar SK, Verma M (2012) Green synthesis approach: extraction of chitosan from fungus mycelia. Crit Rev Biotechnol 33:379–403. https://doi.org/10.3109/07388551.2012.717217

    Article  CAS  PubMed  Google Scholar 

  21. Suntornsuk W, Pochanavanich P, Suntornsuk L (2002) Fungal chitosan production on food processing by-products. Process Biochem 37:727–729

    Article  CAS  Google Scholar 

  22. Wang W, Du Y, Qiu Y, Wang X, Hu Y, Yang J, Cai J, Kennedy JF (2008) A new green technology for direct production of low molecular weight chitosan. Carbohydr Polym 74:127–132

    Article  CAS  Google Scholar 

  23. Kleekayai T, Suntornsuk W (2011) Production and characterization of chitosan obtained from Rhizopus oryzae grown on potato chip processing waste. World J Microbiol Biotechnol 27:1145–1154

    Article  CAS  Google Scholar 

  24. Montgomery DC, Runger GC, Hubele NF (2001) Engineering statistics, 3rd edn. Wiley, Hoboken

    Google Scholar 

  25. Cardoso A, Lins CIM, dos Santos ER, Silva MCF, Campos-Takaki GM (2012) Microbial enhance of chitosan production by Rhizopus arrhizus using agroindustrial substrates. Molecules 17:4904–4914

    Article  CAS  Google Scholar 

  26. Kumirska J, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thöming J, Stepnowski P (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8:1567–1636

    Article  CAS  Google Scholar 

  27. Alipour S, Habibi A, Taavoni S, Varmira K (2017) β-carotene production from soap stock by loofa-immobilized Rhodotorula rubra in an airlift photobioreactor. Process Biochem 54:9–19

    Article  CAS  Google Scholar 

  28. Méndez A, Pérez C, Montañéz JC, Martínez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 12:961–968

    Article  Google Scholar 

  29. Gomaa EZ (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J Microbiol 50:103–111

    Article  CAS  Google Scholar 

  30. Kannan M, Nesakumari M, Rajarathinam K, Ranjit Singh AJA (2010) Production and characterization of mushroom chitosan under solid-state fermentation conditions. Adv Biol Res 4:10–13

    CAS  Google Scholar 

  31. George TS, Senthil Guru KS, Vasanthi NS, Kannan KP (2011) Extraction, purification and characterization of chitosan from endophytic fungi isolated from medicinal plants. World J Sci Technol 1:43–48

    CAS  Google Scholar 

  32. Wang T, Li H, Wang M, Tan T (2007) Integrative extraction of ergosterol, (1→3)-α-d-glucan and chitosan from Penicillium chrysogenum mycelia. Chin J Chem Eng 15:725–729

    Article  CAS  Google Scholar 

  33. Zvezdova D (2010) Synthesis and characterization of chitosan from marine sources in Black Sea. Annu Proc 49:65–69

    Google Scholar 

  34. Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580

    Article  CAS  Google Scholar 

  35. Rumengan IFM, Suryanto E, Modaso R, Wullur S, Tallei TE, Limbong D (2014) Structural characteristics of chitin and chitosan isolated from the biomass of cultivated rotifer, Brachionus rotundiformis. Int J Fish Aquat Sci 3:12–18

    Google Scholar 

  36. Abdou ES, Nagy KSA, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol 99:1359–1367

    Article  CAS  Google Scholar 

  37. Rao V, Johns J (2008) Thermal behavior of chitosan/natural rubber latex blends TG and DSC analysis. J Therm Anal Calorim 92(3):801–806

    Article  CAS  Google Scholar 

  38. Kumar S, Koh J (2012) Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications. Int J Mol Sci 13:6102–6116

    Article  CAS  Google Scholar 

  39. Wang Y, Chang Y, Yu L, Zhang C, Xu X, Xue Y, Li Z, Xue C (2013) Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydr Polym 92:90–97

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Habibi.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, A., Karami, S., Varmira, K. et al. Key parameters optimization of chitosan production from Aspergillus terreus using apple waste extract as sole carbon source. Bioprocess Biosyst Eng 44, 283–295 (2021). https://doi.org/10.1007/s00449-020-02441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02441-2

Keywords

Navigation