Skip to main content
Log in

Impedance characterization and microwave permittivity of multi-walled carbon nanotubes/BaTiO3/epoxy composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polymer composite materials with mixed fillers are widely investigated due to potentially superior properties they provide compared to a composite with a single filler. In this work, the electrical properties of multi-walled carbon nanotubes (MWCNT)/BaTiO3/epoxy composites are investigated using impedance measurements, modeling with equivalent circuit model, determining of alternating current conductivity in the range 10 Hz–2 MHz, permittivity measurements at frequencies 1–67 GHz, and temperature dependencies (77–290 K) of direct current conductivity. Measurements were processed to define the influence of filler combination (carbon nanotubes and BaTiO3) on dielectric properties of the epoxy composites. Nyquist diagrams indicate that all investigated composites have extensive conductive clusters. Permittivity increases monotonically with carbon nanotubes content with a steeper increase of the real part at lower frequencies.

Alternating current conductivity has been determined to increase significantly at frequencies over 1 GHz. Temperature dependencies of direct current conductivity in the range 77–293 K exhibit a maximum near 180–220 K, which is shifted to the higher temperatures with the increase of carbon nanotubes content. The observed enhanced values of complex permittivity and electrical conductivity of three-phase MWCNT/BaTiO3/epoxy composites lead to a comparatively high microwave attenuation constant, which may be tuned by the carbon nanotubes content in the composite. It suggests that these composites might be perspective shielding and absorbing materials used for microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. LYu Matzui, I.V. Ovsienko, T.A. Len, YuI Prylutskyy, P. Scharff, Transport properties of carbon nanotube-based composites. Fullerenes Nanotubes Carbon Nanostruct 13, 259–265 (2005)

    ADS  Google Scholar 

  2. A. Lazarenko, L. Vovchenko, D. Matsui, Yu Prylutskyy, L. Matzuy, U. Ritter, P. Scharff, Electrical and thermal conductivity of polymer-nanocarbon composites. Mol Cryst Liq Cryst 497, 397–407 (2008)

    Google Scholar 

  3. P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio, Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12, 750–753 (2000)

    Google Scholar 

  4. O.P. Matyshevska, A. Karlash Yu, V. Shtogun Ya, A. Benilov, Yu Kirgizov, K.O. Gorchinskyy, E.V. Buzaneva, I. Prylutskyy Yu, P. Scharff, Self-organizing DNA/carbon nanotube molecular films. Mater Sci Eng C 15, 249–252 (2001)

    Google Scholar 

  5. S.V. Prylutska, I.I. Grynyuk, O.P. Matyshevska, V.M. Yashchuk, Yu.I Prylutskyy, U. Ritter, P. Scharff, Estimation of multi-walled carbon nanotubes toxicity in vitro. Physica E 40, 2565–2569 (2008)

    ADS  Google Scholar 

  6. A. Agambayev, K.H. Rajab, A.H. Hassan, M. Farhat, H. Bagci, K.N. Salama, Towards fractional-order capacitors with broad tunable constant phase angles: multi-walled carbon nanotube-polymer composite as a case study. J Phys D: Appl Phys 51, 065602 (2018)

    ADS  Google Scholar 

  7. S. Sankaran, K. Deshmukh, M.B. Ahamed, K.S.K. Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos Part A: Appl Sci Manuf 114, 49–71 (2018)

    Google Scholar 

  8. D.W. Lee, J. Park, B.J. Kim, H. Kim, C. Choi, R.H. Baughman, S.J. Kim, Enhancement of electromagnetic interference shielding effectiveness with alignment of spinnable multiwalled carbon nanotubes. Carbon 142, 528–534 (2018)

    Google Scholar 

  9. N. Saba, P. Tahir, M.A. Jawaid, Review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6, 2247–2273 (2014)

    Google Scholar 

  10. R. Belhimria, S. Boukheir, Z. Samir, A. Len, M.E. Achour, N. Éber, L.C. Costa, A. Oueriagli, Fractal approach to alternating current impedance spectroscopy studies of carbon nanotubes/epoxy polymer composites. Appl Microsc 47, 126–130 (2017)

    Google Scholar 

  11. Z. Samir, Y.E. Merabet, M.P.F. Grac, S.S. Teixeira, M.E. Achour, L.C. Costa, Impedance spectroscopy study of polyester/carbon nanotube composites. Polym Compos 39, 1297–1302 (2018)

    Google Scholar 

  12. R. Popielarz, C.K. Chiang, Polymer composites with the dielectric constant comparable to that of barium titanate ceramics. Mater Sci Eng B 139, 48–54 (2007)

    Google Scholar 

  13. Z.M. Dang, Y. Zheng, H.P. Xu, Effect of the ceramic particle size on the microstructure and dielectric properties of barium titanate/polystyrene composites. J Appl Polym Sci 110, 3473–3479 (2008)

    Google Scholar 

  14. H.X. Tang, Y.R. Lin, C. Andrews, S. Henry, Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22, 015702 (2011)

    ADS  Google Scholar 

  15. F. Piana, I. Cacciotti, M. Šlouf, F. Nanni, J. Pfleger, One-pot preparation of surface-functionalized barium titanate nanoparticles for high-K polystyrene composite films prepared via floating method. J Mater Sci 53, 11343 (2018)

    ADS  Google Scholar 

  16. C. Nawanil, W. Makcharoen, K. Khaosa-Ard, T. Maluangnont, W. Vittayakorn, D. Isarakorn, N. Vittayakorn, Electrical and dielectric properties of barium titanate—polydimethylsiloxane nanocomposite with 0–3 connectivity modified with carbon nanotube (CNT). Integr Ferroelectr 195, 46–57 (2019)

    Google Scholar 

  17. N. Xu, Q. Zhang, H. Yang, Y. Xia, Y. Jiang, In-situ preparation of hierarchical flower-like TiO2/carbon nanostructures as fillers for polymer composites with enhanced dielectric properties. Sci Rep 7, 43970 (2017)

    ADS  Google Scholar 

  18. M. Arbatti, X. Shan, Z.Y. Cheng, Ceramic-polymer composites with high dielectric constant. Adv Mater 19, 1369–1372 (2007)

    Google Scholar 

  19. A. Patsidis, G.C. Psarras, Dielectric behavior and functionality of polymer matrix-ceramic BaTiO3 composites. Express Polym Lett 2, 718–726 (2008)

    Google Scholar 

  20. Y. Li, X. Ge, L. Wang, L. Wang, W. Liu, H. Li, K.Y. Robert Li, S.C. Tjong, Dielectric relaxation behavior of PVDF composites with nanofillers of different conductive nature. Curr Nanosci 9, 679–685 (2013)

    Google Scholar 

  21. I. Cacciotti, M. Valentini, M. Raio, F. Nanni, Design and development of advanced BaTiO3/MWCNTs/PVDF multi-layered systems for microwave applications. Compos Struct 224, 111075 (2019)

    Google Scholar 

  22. X. Li, L. Yu, W. Zhao, Y. Shi, L. Yu, Y. Dong, Y. Zhu, Y. Fu, X. Liu, F. Fu, Prism-shaped hollow carbon decorated with polyaniline for microwave absorption. Chem Eng J 379, 122393 (2020)

    Google Scholar 

  23. X. Li, Y. Zhu, X. Liu, XuB Bin, Q. Ni, A broadband and tunable microwave absorption technology enabled by VGCFs/PDMS–EP shape memory composites. Compos Struct 238, 111954 (2020)

    Google Scholar 

  24. A. Allaoui, S. Bai, H.M. Cheng, J.B. Bai, Mechanical and electrical properties of a MWCNT/epoxy composite. Compos Sci Technol 62, 1993–1998 (2002)

    Google Scholar 

  25. J.W.K. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon nanotube-epoxy composites. Polymer 44, 5893–5899 (2003)

    Google Scholar 

  26. P. Pötschke, S.M. Dudkin, I. Alig, Dielectric spectroscopy on melt processed polycarbonate-multiwalled carbon nanotube composites. Polymer 44, 5023–5030 (2003)

    Google Scholar 

  27. R. Rizvi, H. Naguib, Effect of carbon nanoparticle type, content and stress on piezoresistive polyethylene nanocomposites. Polym Eng Sci 55, 1643–1651 (2015)

    Google Scholar 

  28. M. Monti, I. Armento, G. Faiella, V. Antonucci, J.M. Kenny, L. Torre, M. Giordano, Toward the microstructure-properties relationship in MWCNT/epoxy composites: percolation behavior and dielectric spectroscopy. Compos Sci Technol 96, 38–46 (2014)

    Google Scholar 

  29. A. Sanli, C. Müller, O. Kanoun, C. Elibol, M.F.X. Wagner, Piezoresistive characterization of multi-walled nanotube-epoxy based flexible strain sensitive films by impedance spectroscopy. Compos Sci Technol 122, 18–26 (2016)

    Google Scholar 

  30. X. Ji, D. Chen, Q. Wang, J. Shen, S. Guo, Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane. Compos Sci Technol 163, 49–55 (2018)

    Google Scholar 

  31. A.A. Khurram, S.A. Rakha, N. Ali, A. Munir, P. Zhou, M.A. Raza, Comparison of the dielectric response of hybrid polymer composites filled with one-dimensional and two-dimensional carbonaceous materials in the microwave range. Adv Polym Technol 37, 890–897 (2018)

    Google Scholar 

  32. M.A. Olariu, C. Hamciuc, O.M. Neacsu, E. Hamciuc, L. Dimitrov, Microwave dielectric properties of polyimide composites based on TiO2 nanotubes and carbon nanotubes. Dig J Nanomater Bios 14, 37–44 (2019)

    Google Scholar 

  33. L. Vovchenko, O. Lozitsky, L. Matzui, V. Oliynyk, V. Zagorodnii, M. Skoryk, Electromagnetic shielding properties of epoxy composites with hybrid filler nanocarbon/BaTiO3. Mat Chem Phys 240, 122234 (2020)

    Google Scholar 

  34. B. Gompf, M. Dressel, A. Berrier, Impedance spectroscopy and equivalent circuits of metal-dielectric composites around the percolation threshold. Appl Phys Lett 113, 243104 (2018)

    Google Scholar 

  35. Y. Wang, Y. Pan, X. Zhang, K. Tan, Impedance spectra of carbon black filled high-density polyethylene composites. J Appl Polym Sci 98, 1344–1350 (2005)

    Google Scholar 

  36. S. Stassi, A. Sacco, G. Canavese, Impedance spectroscopy analysis of the tunneling conduction mechanism in piezoresistive composites. J Appl Phys 47, 345306 (2014)

    Google Scholar 

  37. L.E. Helseth, Electrical impedance spectroscopy of multiwall carbon nanotube–PDMS composites under compression. Mater Res Express 5, 105002 (2018)

    ADS  Google Scholar 

  38. S.-H. Yao, J.-K. Yuan, Z.-M. Dang, J. Bai, High dielectric performance of three-component nanocomposites induced by a synergetic effect. Mater Lett 64, 2682–2684 (2010)

    Google Scholar 

  39. Z.M. Elimat, AC-impedance and dielectric properties of hybrid polymer composites. J Compos Mater 49, 3–15 (2013)

    Google Scholar 

  40. J. Chang, G. Liang, A. Gu, S. Cai, L. Yuan, The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50, 689–698 (2012)

    Google Scholar 

  41. J. Li, W. Lu, J. Suhr, H. Chen, J.Q. Xiao, T.W. Chou, Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films. Sci Rep 7, 2349 (2017)

    ADS  Google Scholar 

  42. Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res 11, 1426–1436 (2018)

    Google Scholar 

  43. T.P. Iglesias, G. Vilão, R. João Carlos Reis, An approach to the interpretation of cole-davidson and cole-cole dielectric functions. J Appl Phys 122, 074102 (2017)

    ADS  Google Scholar 

  44. M. Koledintseva, K. Rozanov, J. Drewniak, Engineering, modeling and testing of composite absorbing materials for EMC applications. In: Advances in Composite Materials - Ecodesign and Analysis, ed. by Brahim Attaf (IntechOpen, 2011) https://doi.org/10.5772/14884

  45. A.A. Khurram, S.A. Rakha, P. Zhou, M. Shafi, A. Munir, Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with graphene nanoplatelets and carbon nanotubes. J Appl Phys 118, 044105 (2015)

    ADS  Google Scholar 

  46. J. Li, M.L. Sham, J.-K. Kim, G. Marom, Morphology and properties of UV/ozone treated graphite nanoplatelets/epoxy nanocomposite. Compos Sci Technol 67, 296–305 (2007)

    Google Scholar 

  47. R. Bhatia, K. Kumari, R. Rani, A. Suri, U. Pahuja, D. Singh, A critical review of experimental results on low temperature charge transport in carbon nanotubes based composites. Rev Phys 3, 15–25 (2018)

    Google Scholar 

  48. R. Bhatia, C.S.S. Sangeeth, V. Prasad, R. Menon, Unusual metallic-like transport near the percolation threshold. Appl Phys Lett 96, 24211 (2010)

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila L. Vovchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors state that they have full control of all primary data and that they agree to allow the journal to review their data if requested.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The manuscript has not been published elsewhere and it has not been submitted simultaneously for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vovchenko, L.L., Lozitsky, O.V., Matzui, L.Y. et al. Impedance characterization and microwave permittivity of multi-walled carbon nanotubes/BaTiO3/epoxy composites. Appl. Phys. A 126, 801 (2020). https://doi.org/10.1007/s00339-020-03831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03831-9

Keywords

Navigation