Skip to main content
Log in

Energy Aspects of Technological Inheritance of Aircraft Metal Parts

  • AIRCRAFT PRODUCTION TECHNOLOGY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2020

This article has been updated

Abstract

The paper is devoted to estimation of parameters of technological inheritance based on the energy concept. The features of energy aspects and their technological inheritance are described by the help of processes occurring in parts during the manufacture, operation, and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

REFERENCES

  1. Valiev, A.I., A Comparative Analysis of the Manufacture of Compressor Blades of Gas Turbine Engine, Fundamental’nyye Issledovaniya, 2017, no. 5, pp. 36–41.

    Google Scholar 

  2. Vikulin, A.V., Yaroslavtsev, N.L., and Zemlyanaya, V.A., Methodology of the Development of Heat-Stressed Parts of Gas Turbine Engines, Trudy MAI, 2016, issue 88, URL: http://trudymai.ru/eng/published.php?ID=70594.

    Google Scholar 

  3. Egorova, Yu.B., Davydenko, L.V., Chibisova, E.V., and Shmyrova, A.V., The Effect of Chemical Composition and Heat Treatment on Mechanical Properties of Forgings from a Pseudo-β-Titanium Alloy, Vestnik Moskovskogo Aviatsionnogo Instituta, 2018, vol. 25, no. 1, pp. 190–201.

    Google Scholar 

  4. Nochovnaya, N.A., Nikitin, Ya.Yu., and Savushkin, A.N., Exploring the Properties Changes of the Titanium Alloy Blades Surface after Chemical Cleaning from Carbonaceous Impurities, Vestnik Moskovskogo Aviatsionnogo Instituta, 2019, vol. 26, no. 1, pp. 236–243.

    Google Scholar 

  5. Ermakov, S.A., Lalabekov, V.I., and Samsonovich, S.L., The Adjustment of the Mathematical Model Accuracy of the Gas-Hydraulic Flight Control Actuator Power Circuit of an Aircraft, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 3, pp. 86–94 [Russian Aeronautics (Engl. Transl.), 2017, vol. 60, no. 3, pp. 412–420].

    Google Scholar 

  6. Yashcheritsyn, P.I., Technological Inheritance of Operational Parameters of Machine Parts, Spravochnik. Inzhenernyi Zhurnal s Prilozheniem, 2004, no. 9 (90), pp. 20–22.

    Google Scholar 

  7. Petukhov, A.N., Requirements to Quality Superficial Layer of GTE Parts, Vestnik SGAU, 2011, no. 3-1 (27), pp. 83–91.

    Google Scholar 

  8. Blyumenshtein, V.Yu. and Smelyanskii, V.M., Mekhanika tekhnologicheskogo nasledovaniya na stadiyakh obrabotki i ekspluatatsii detalei mashin (Mechanics of Technological Inheritance during Treatment and Operation of Machine Parts), Moscow: Mashinostroenie-1, 2007.

    Google Scholar 

  9. Dal’skii, A.M., Bazrov, B.M., Vasil’ev, A.S., Dmitriev, A.M., Kolesnikov, A.G., Kondakov, A.I., and Shachnev, Yu.A., Tekhnologicheskaya nasledstvennost’ v mashinostroitel’nom proizvodstve (Technological Inheritance in Machinery Manufacturing), Dal’skii, A.M., Ed., Moscow: MAI, 2000.Plants of Spacecraft), St. Petersburg: Professional, 2014.

    Google Scholar 

  10. Mousokhranov, M.V., Kalmykov, V.V., and Logutenkova, E.V., The Influence of Technological Parameters on Physical and Mechanical Properties of Surfaces, IOP Conference Series: Materials Science and Engineering, 2019, 483 (1), p. 012054, URL: https://iopscience.iop.org/article/10.1088/1757-899X/483/1/012054/pdf.

    Google Scholar 

  11. Goncharenko, V.I. and Oleshko, V.S., Metod kontaktnoi raznosti potentsialov v otsenke energeticheskogo sostoyaniya poverkhnosti metallicheskikh detalei aviatsionnoi tekhniki (The Method of Contact Potential Difference in Assessing the Energy State of the Surface of Metal Aircraft Parts), Moscow: MAI, 2019.

    Google Scholar 

  12. Oleshko, V.S. and Pigovkin, I.S., RU Patent 2644982, Byul. Izobr., 2018, no. 5.

  13. Samoilenko, V.M. and Oleshko, V.S., Application of the Contact Potential Difference Measurement Device "Surface-11" in Nondestructive Testing of Machine Elements, Oboronnyi Kompleks – Nauchno-Tehnicheskomu Progressu Rossii, 2011, issue 2, pp. 3–6.

    Google Scholar 

  14. Musokhranov, M.V., Antonyuk, F.I., and Kalmykov, V.V., Determination of a Value of the Surface Energy through the Electron Work Function, Sovremennye Problemy Nauki i Obrazovaniya, 2014, no. 6, URL: http://science-education.ru/120-16036.

    Google Scholar 

  15. Panteleev, K.V., Svistun, A.I., and Zharin, A.L., Methods for Diagnostics of Local Changes in the Plastic Deformation by the Electron Work Function, Pribory i Metody Izmerenii, 2015, no. 1 (10), pp. 56–63.

    Google Scholar 

  16. Markov, A.A., Rabota vykhoda elektrona i antifriktsionnost’ metallov (The Electron Work Function and Antifriction of Metals), Moscow: Moskovskii Gos. Institut Radiotekhniki, Elektroniki i Avtomatiki, 2004.

    Google Scholar 

  17. Kocharov, E.A. and Zakharov, A.M., Optimization of Turning Conditions before Restoration of Parts by Coating, Nauchno-tematicheskii sbornik VVIA im. prof. N.E. Zhukovskogo (Scientific Thematic Collection of Air Force Engineering Academy named after Professor N.E. Zhukovsky), Moscow: Izdanie Academii, 1990, issue 1316, Ekspluatatsiya i remont aviatsionnoi tekhniki (Operation and Repair of Aircraft), pp. 292–297.

    Google Scholar 

  18. Kocharov, E.A., Il’in, A.A., Kollerov, M.Yu., Alekseev, V.V., and Sannikov, A.A., Technological Features of Repair by Welding of Aircraft Parts of VT23 Alloy, Nauchno-metodicheskie materialy po vosstanovleniyu aviatsionnoi tekhniki (Scientific and Methodological Materials for Aircraft Repair), Moscow: VVIA im. Prof. N.E. Zhukovskogo, 1983, pp. 51–57.

    Google Scholar 

  19. Zharin, A.L., Metod kontaktnoi raznosti potentsialov i ego primenenie v tribologii (Contact Potential Difference Method and its Application in Tribology), Minsk: Bestprint, 1996.

    Google Scholar 

  20. Kalmykov, V.V., Musokhranov, M.V., Malyshev, E.N., and Zenkin, N.V., The Electron Work Function as a Measure of Surface Energy, Sovremennye Tendentsii Razvitiya Nauki i Tekhnologii, 2015, no. 6-2, pp. 50–52.

    Google Scholar 

  21. Goncharenko, V.I. and Oleshko, V.S., Determining the Surface Energy of Tools in Aviation Industry, STIN, 2017, no. 2, pp. 24–27.

    Google Scholar 

  22. Kubich, V.I., Oleshko, V.S., Guchenko, S.A., and Yurov, V.M., Dry Friction of Metal Coatings, Materialy 14-oi mezhdunarodnoi nauchnoi konferentsii "Fizika tverdogo tela, funktsional’nye materialy i novyye tekhnologii (FTT-2018)" (Proc. of the 14 Int. Sc. Conf. "Solid State Physics, Functional Materials and New Technologies (SSPh-2018)"), Karaganda: KarGU, 2018, pp. 86–92.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

The study was supported by the Russian Foundation for Basic Research as a part of research project no. 20-08-00652.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Oleshko.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharenko, V.I., Oleshko, V.S. Energy Aspects of Technological Inheritance of Aircraft Metal Parts. Russ. Aeronaut. 63, 323–329 (2020). https://doi.org/10.3103/S1068799820020191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820020191

Keywords

Navigation