Skip to main content
Log in

Small-Size FDCT/IDCT Algorithms with Reduced Multiplicative Complexity

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Discrete orthogonal transforms including the discrete Fourier transform, the discrete Walsh transform, the discrete Hartley transform, the discrete Slant transform, etc. are extensively used in radio-electronic and telecommunication systems for data processing and transmission. The popularity of using these transform is explained by the presence of fast algorithms that minimize the computational and hardware complexity of their implementation. A special place in the list of transforms is occupied by the forward and inverse discrete cosine transforms (FDCT and IDCT respectively). This article proposes a set of parallel algorithms for the fast implementation of FDCT/IDCT. The effectiveness of the proposed solutions is justified by the possibility of the factorization of the FDCT/IDCT matrices, which leads to a decrease in computational and implementation complexity. Some fully parallel FDCT/IDCT algorithms for small lengths N = 2, 3, 4, 5, 6, 7 are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Ahmed, K. R. Rao, Orthogonal Transforms for Digital Signal Processing (Springer, 1975). DOI: https://doi.org/10.1007/978-3-642-45450-9.

    Book  MATH  Google Scholar 

  2. Douglas F. Elliott, K. Ramamohan Rao, Fast Transforms: Algorithms, Analyses, Applications (Academic Press, 1983).

    MATH  Google Scholar 

  3. Guoan Bi, Yonghong Zeng, Transforms and Fast Algorithms for Signal Analysis and Representations (Birkhäuser, 2004). DOI: https://doi.org/10.1007/978-0-8176-8220-0.

    Book  MATH  Google Scholar 

  4. R. E. Blahut, Fast Algorithms for Digital Signal Processing (CUP, 2010). DOI: https://doi.org/10.1017/CBO9780511760921.

    Book  MATH  Google Scholar 

  5. N. Ahmed, T. Natarajan, K. R. Rao, “Discrete cosine transform,” IEEE Trans. Comput. C-23, No. 1, 90 (Jan. 1974). DOI: https://doi.org/10.1109/T-C.1974.223784.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. R. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications (Academic Press, New York, 1990).

    Book  MATH  Google Scholar 

  7. V. Britanak, P. C. Yip, K. R. Rao, Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations (Academic Press Inc., Elsevier Science, Amsterdam, 2006). DOI: https://doi.org/10.1016/B978-0-12-373624-6.X5000-0.

    Google Scholar 

  8. B. Chitprasert, K. R. Rao, “Discrete cosine transform filtering,” Signal Processing19, No. 3, 233 (Mar. 1990). DOI: https://doi.org/10.1016/0165-1684(90)90115-F.

    Article  MathSciNet  MATH  Google Scholar 

  9. Humberto Ochoa-Dominguez, K. R. Rao, Discrete Cosine Transform, 2nd ed. (CRC Press, 2019).

    Book  Google Scholar 

  10. D. Salomon, Data Compression: The Complete Reference, 3rd ed. (Springer, 2004). DOI: https://doi.org/10.1007/978-1-84628-603-2.

    MATH  Google Scholar 

  11. K. Sayood, Introduction to Data Compression, 5th ed. (Elsevier, 2006). URI: {rs https://www.elsevier.com/books/introduction-to-data-compression/sayood/978-0-12-809474-7}.

    MATH  Google Scholar 

  12. M. Puschel, J. M. F. Moura, “Algebraic signal processing theory: Cooley-Tukey type algorithms for DCTs and DSTs,” IEEE Trans. Signal Process. 56, No. 4, 1502 (April 2008). DOI: https://doi.org/10.1109/TSP.2007.907919.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. F. Chang, D. G. Messerschmitt, “A new approach to decoding and compositing motion-compensated DCT-based images,” Proc. of IEEE ICASSP, 27–30 Apr. 1993, Minneapolis, USA (IEEE, 1993). DOI: https://doi.org/10.1109/ICASSP.1993.319837.

    Google Scholar 

  14. L. Krikor, S. Baba, T. Arif, Z. Shaaban, “Image encryption using DCT and stream cipher,” European J. Sci. Res. 32, No. 1, 48 (2009).

    Google Scholar 

  15. M. Ptáček, “Digitální zpracování a přenos obrazové informace,” Nakladatelství dopravy a spojů (NADAS, Praha, 1983).

    Google Scholar 

  16. Herve Benoit, Digital Television, 2nd ed. (Focal Press, 2002). URI: {rs https://www.oreilly.com/library/view/digital-television-2nd/9780240516950/}.

    Book  Google Scholar 

  17. W. Fischer, Digital Television: A Practical Guide for Engineers (Springer Science & Business Media, 2004). DOI: https://doi.org/10.1007/978-3-662-05429-1.

    Book  Google Scholar 

  18. J. Arnold, M. Frater, M. Pickering, Digital Television: Technology and Standards, 1st ed. (Wiley-Interscience, 2007). URI: {rs https://www.wiley.com/en-us/Digital+Television%3A+Technology+and+Standards-p-9780470173411}.

    Google Scholar 

  19. J. R. Hernandez, M. Amado, F. Perez-Gonzalez, “DCT-domain watermarking techniques for still images: detector performance analysis and a new structure,” IEEE Trans. Image Process. 9, No. 1, 55 (2000). DOI: https://doi.org/10.1109/83.817598.

    Article  Google Scholar 

  20. A. G. Bors, I. Pitas, “Image watermarking using DCT domain constraints,” Proc. IEEE. Int. Conf. on Image Processing, 19 Sept. 1996, Lausanne, Switzerland (IEEE, 1996), pp. 231–234. DOI: https://doi.org/10.1109/ICIP.1996.560426.

    Chapter  Google Scholar 

  21. M. A. Suhail, M. S. Obaidat, “Digital watermarking-based DCT and JPEG model,” IEEE Trans. Instrumentation Meas. 52, No. 5, 1640 (2003). DOI: https://doi.org/10.1109/TIM.2003.817155.

    Article  Google Scholar 

  22. W. C. Chu, “DCT-based image watermarking using subsampling,” IEEE Trans. Multimedia5, No. 1, 34 (Mar. 2003). DOI: https://doi.org/10.1109/TMM.2003.808816.

    Article  Google Scholar 

  23. Jeonghee Jeon, Sang-Kwang Lee, Yo-Sung Ho, “A three-dimensional watermarking algorithm using the DCT transform of triangle strips,” Int. Workshop Digital Watermarking, IWDW 2003: Lecture Notes in Computer Science book series (LNCS, 2003), Vol. 2939, pp. 508–517. DOI: https://doi.org/10.1007/978-3-540-24624-4_41.

    Article  Google Scholar 

  24. Marwa Chafii, Justin P. Coon, Dene A. Hedges, “DCT-OFDM with index modulation,” IEEE Commun. Lett. 21, No. 7, 1489 (2017). DOI: https://doi.org/10.1109/LCOMM.2017.2682843.

    Article  Google Scholar 

  25. Dwi Astharini, Dadang Gunawan, “Discrete cosine transform and pulse amplitude modulation for visible light communication with unequally powered multiple access,” Proc. of 2018 2nd Int. Conf. on Applied Electromagnetic Technology, AEMT, 9–12 Apr. 2018, Lombok, Indonesia (IEEE, 2018), pp. 1–5. DOI: https://doi.org/10.1109/AEMT.2018.8572430.

    Google Scholar 

  26. W.-H. Chen, C. Smith, S. Fralick, “A fast computational algorithm for the discrete cosine transform,” IEEE Trans. Commun. 25, No. 9, 1004 (1977). DOI: https://doi.org/10.1109/TCOM.1977.1093941.

    Article  MATH  Google Scholar 

  27. B. Lee, “A new algorithm to compute discrete cosine transform,” IEEE Trans. Acoust., Speech, Signal Processing32, No. 6, 1243 (Dec. 1984). DOI: https://doi.org/10.1109/TASSP.1984.1164443.

    Article  MATH  Google Scholar 

  28. Y. Arai, T. Agui, M. Nakajima, “A fast DCT-SQ scheme for images,” IEICE Trans. Fundamentals Electron., Commun. Computer Sci. 71, No. 11, 1095 (1988). URI: {rs https://scinapse.io/papers/2062271532}.

    Google Scholar 

  29. C. Loeffler, A. Ligtenberg, G. S. Moschytz, “Practical fast 1-D DCT algorithms with 11 multiplications,” Proc. of Int. Conf. on Acoustics, Speech, and Signal Processing, 23–26 May 1989, Glasgow, UK (IEEE, 1989), pp. 988–991. DOI: https://doi.org/10.1109/ICASSP.1989.266596.

    Google Scholar 

  30. C. W. Kok, “Fast algorithm for computing discrete cosine transform,” IEEE Trans. Signal Processing45, No. 3, 757 (1997). DOI: https://doi.org/10.1109/78.558495.

    Article  Google Scholar 

  31. E. Feig, S. Winograd, “Fast algorithms for the discrete cosine transform,” IEEE Trans. Signal Processing40, No. 9, 2174 (1992). DOI: https://doi.org/10.1109/78.157218.

    Article  MATH  Google Scholar 

  32. B. Tseng, W. Miller, “On computing the discrete cosine transform,” IEEE Trans. Comput. C-27, No. 10, 966 (1978). DOI: https://doi.org/10.1109/TC.1978.1674977.

    Article  MATH  Google Scholar 

  33. J. Makhoul, “A fast cosine transform in one and two dimensions,” IEEE Trans. Acoust., Speech, Signal Processing28, No. 1, 27 (1980). DOI: https://doi.org/10.1109/TASSP.1980.1163351.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Vetterli, H. J. Nussbaumer, “Simple FFT and DCT algorithms with reduced number of operations,” Signal Process. 6, No. 4, 267 (1984). DOI: https://doi.org/10.1016/0165-1684(84)90059-8.

    Google Scholar 

  35. H. S. Malvar, “Fast computation of discrete cosine transform through fast Hartley transform,” Electron. Lett. 22, No. 7, 352 (1986). DOI: https://doi.org/10.1049/el:19860239.

    Article  Google Scholar 

  36. M. Haque, “A two-dimensional fast cosine transform,” IEEE Trans. Acoust., Speech, Signal Processing33, No. 6, 1532 (1985). DOI: https://doi.org/10.1109/TASSP.1985.1164737.

    Article  MATH  Google Scholar 

  37. H. S. Hou, “A fast recursive algorithm for computing the discrete cosine transform,” IEEE Trans. Acoust., Speech, Signal Processing35, No. 10, 1455 (1987). DOI: https://doi.org/10.1109/TASSP.1987.1165060.

    Article  Google Scholar 

  38. H. R. Wu, F. J. Paoloni, “The structure of vector radix fast Fourier transforms,” IEEE Trans. Acoust., Speech, Signal Processing37, No. 9, 1415 (1989). DOI: https://doi.org/10.1109/29.31295.

    Article  MATH  Google Scholar 

  39. S. C. Chan, K. L. Ho, “Direct methods for computing discrete sinusoidal transforms,” IEEE Proc. F: Radar Signal Process. 137, No. 6, 433 (Dec. 1990). DOI: https://doi.org/10.1049/ip-f-2.1990.0063.

    MathSciNet  Google Scholar 

  40. Nam Ik Cho, San Uk Lee, “Fast algorithm and implementation of 2-D discrete cosine transform,” IEEE Trans. Circuits Syst. 38, No. 3, 297 (1991). DOI: https://doi.org/10.1109/31.101322.

    Article  Google Scholar 

  41. C. A. Christopoulos, A. N. Skodras, “On the computation of the fast cosine transform,” Proc. ECCTD-Circuit Theory and Design (1993), pp. 1037–1042.

    Google Scholar 

  42. Y.-H. Chan, W.-C. Siu, “Mixed-radix discrete cosine transform,” IEEE Trans. Signal Process. 41, No. 11, 3157 (1993). DOI: https://doi.org/10.1109/78.257281.

    Article  Google Scholar 

  43. Yu-Tai Chang, Chin-Liang Wang, “A new fast DCT algorithm and its systolic VLSI implementation,” IEEE Trans. Circuits Systems II: Analog Digital Signal Processing44, No. 11, 959 (1997). DOI: https://doi.org/10.1109/82.644050.

    Article  Google Scholar 

  44. Y. Jeong, I. Lee, H. S. Kim, K. T. Park, “Fast DCT algorithm with fewer multiplication stages,” Electron. Lett. 34, No. 8, 723 (1998). DOI: https://doi.org/10.1049/el:19980533.

    Article  Google Scholar 

  45. J. Kwak, J. You, “One- and two-dimensional constant geometry fast cosine transform algorithms and architectures,” IEEE Trans. Signal Processing47, No. 7, 2023 (1999). DOI: https://doi.org/10.1109/78.771049.

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Takala, D. Akopian, J. Astola, J. Saarinen, “Constant geometry algorithm for discrete cosine transform,” IEEE Trans. Signal Processing48, No. 6, 1840 (2000). DOI: https://doi.org/10.1109/78.845951.

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Bi, G. Li, K.-K. Ma, T. C. Tan, “On the computation of two-dimensional DCT,” IEEE Trans. Signal Process. 48, No. 4, 1171 (Apr. 2000). DOI: https://doi.org/10.1109/78.827550.

    Article  MATH  Google Scholar 

  48. Jiun-In Guo, “A low cost 2-D inverse discrete cosine transform design for image compression,” Proc. of 2001 IEEE Int. Symp. on Circuits and Systems, 6–9 May 2001, Sydney, Australia (IEEE, 2001), Vol. 4, pp. 658–661. DOI: https://doi.org/10.1109/ISCAS.2001.922323.

    Google Scholar 

  49. X. Shao, S. G. Johnson, “Type-II/III DCT/DST algorithms with reduced number of arithmetic operations,” Signal Processing88, No. 6, 1553 (2008). DOI: https://doi.org/10.1016/j.sigpro.2008.01.004.

    Article  MATH  Google Scholar 

  50. W. B. Pennebaker, J. L. Mitchell, JPEG still Image Data Compression Standard (Van Nostrand Reinhold, New York, 1993). URI: {rs https://www.springer.com/gp/book/9780442012724}.

    Google Scholar 

  51. Pei-Zong Lee, Fang-Yu Huang, “An efficient prime-factor algorithm for the discrete cosine transform and its hardware implementations,” IEEE Trans. Signal Processing42, No. 8, 1996 (1994). DOI: https://doi.org/10.1109/78.301838.

    Article  Google Scholar 

  52. A. Tatsaki, C. Dre, T. Stouraitis, C. Goutis, “On the computation of the prime factor DST,” Signal Processing42, No. 3, 231 (1995). DOI: https://doi.org/10.1016/0165-1684(94)00132-J.

    Article  MATH  Google Scholar 

  53. A. Tatsaki, C. Dre, T. Stouraitis, C. Goutis, “Prime-factor DCT algorithms,” IEEE Trans. Signal Processing43, No. 3, 772 (1995). DOI: https://doi.org/10.1109/78.370632.

    Article  MATH  Google Scholar 

  54. Guoan Bi, Yonghong Zeng, Yen Qiu Chen, “Prime factor algorithm for multidimensional discrete cosine transform,” IEEE Trans. Signal Processing49, No. 9, 2156 (2001). DOI: https://doi.org/10.1109/78.942642.

    Article  MathSciNet  MATH  Google Scholar 

  55. S.-K. Lu, C.-W. Wu, S.-Y. Juo, “Design of easily testable VLSI arrays for discrete cosine transform,” Proc. of Twenty-Sixth Asilomar Conf. on Signals Systems and Computers, 26–28 Oct. 1992. Pacific Grove, USA (IEEE, 1992), Vol. 2, pp. 989–993. DOI: https://doi.org/10.1109/ACSSC.1992.269072.

    Article  Google Scholar 

  56. S.-W. Lee, W.-H. Hsu, “Parallel implementation of prime-factor discrete cosine transform on the orthogonal multiprocessor,” IEEE Trans. Circuits Systems Video Technol. 3, No. 2, 107 (1993). DOI: https://doi.org/10.1109/76.212717.

    Article  Google Scholar 

  57. N. Rama Murthy, M. N. S. Swamy, “On the real-time computation of DFT and DCT through systolic architectures,” IEEE Trans. Signal Processing42, No. 4, 988 (1994). DOI: https://doi.org/10.1109/78.285671.

    Article  Google Scholar 

  58. K.-W. Shin, H.-W. Jeon, Y.-S. Kang, “An efficient VLSI implementation of vector-radix 2-D DCT using mesh-connected 2-D array,” Proc. of IEEE Int. Symp. on Circuits and Systems, 30 May–2 June 1994, London, UK (IEEE, 1994), Vol. 4, pp. 47–50. DOI: https://doi.org/10.1109/ISCAS.1994.409193.

    Google Scholar 

  59. Chin-Liang Wang, Chang-Yu Chen, “High-throughput VLSI architectures for the 1-D and 2-D discrete cosine transforms,” IEEE Trans. Circuits Systems Video Technology5, No. 1, 31 (1995). DOI: https://doi.org/10.1109/76.350776.

    Article  Google Scholar 

  60. Shih-Chang Hsia, Bin-Da Liu, Jar-Ferr Yang, Bor-Long Bai, “VLSI implementation of parallel coefficient-by-coefficient two-dimensional IDCT processor,” IEEE Trans. Circuits Systems Video Technology5, No. 5, 396 (1995). DOI: https://doi.org/10.1109/76.473561.

    Article  Google Scholar 

  61. Hyesook Lim, E. E. Swartzlander, “An efficient systolic array for the discrete cosine transform based on prime-factor decomposition,” Proc. of 1995 Int. Conf. on Computer Design. VLSI in Computers and Processors, 2–4 Oct. 1995, Austin, USA (IEEE, 1995), pp. 644–649. DOI: https://doi.org/10.1109/ICCD.1995.528936.

    Google Scholar 

  62. Yu-Tai Chang, Chin-Liang Wang, “Systolic architecture for inverse discrete cosine transform,” Electron. Lett. 31, No. 21, 1809 (1995). URI: https://ieeexplore.ieee.org/abstract/document/8840699.

    Article  Google Scholar 

  63. A. Madisetti, A. N. Willson, “A 100 MHz 2-D 8×8 DCT/IDCT processor for HDTV applications,” IEEE Trans. Circuits Systems Video Technol. 5, No. 2, 158 (1995). DOI: https://doi.org/10.1109/76.388064.

    Article  Google Scholar 

  64. V. Srinivasan, K. J. R. Liu, “VLSI design of high-speed time-recursive 2-D DCT/IDCT processor for video applications,” IEEE Trans. Circuits Syst. Video Technol. 6, No. 1, 87 (1996). DOI: https://doi.org/10.1109/76.486423.

    Article  Google Scholar 

  65. C. V. Schimpfle, P. Rieder, J. A. Nossek, “A power efficient implementation of the discrete cosine transform,” Proc. of Thirty-First Asilomar Conf. on Signals, Systems and Computers, 2–5 Nov. 1997, Pacific Grove, USA (IEEE, 1997), Vol. 1, pp. 729–733. DOI: https://doi.org/10.1109/ACSSC.1997.680540.

    Google Scholar 

  66. Y.-P. Lee, T.-H. Chen, L.-G. Chen, M.-J. Chen, C.-W. Ku, “A cost-effective architecture for 8×8 two-dimensional DCT/IDCT using direct method,” IEEE Trans. Circuits Syst. Video Technol. 7, No. 3, 459 (1997). DOI: https://doi.org/10.1109/76.585925.

    Article  Google Scholar 

  67. Yu-Tai Chang, Chin-Liang Wang, “A new fast DCT algorithm and its systolic VLSI implementation,” IEEE Trans. Circuits Systems II: Analog Digital Signal Processing44, No. 11, 959 (1997). DOI: https://doi.org/10.1109/82.644050.

    Article  Google Scholar 

  68. M. A. BenAyed, L. Dulau, P. Nouel, Y. Berthoumieu, N. Masmoudi, P. Kadionik, L. Kamoun, “New design using a VHDL description for DCT based circuits,” Proc. of ICM’98, 16 Dec. 1998, Monastir, Tunisia (IEEE, 1998), pp. 87–90. DOI: https://doi.org/10.1109/ICM.1998.825575.

    Google Scholar 

  69. L.-G. Chen, J.-Y. Jiu, H.-C. Chang, Y.-P. Lee, C.-W. Ku, “A low power 2D DCT chip design using direct 2D algorithm,” Proc. of Asia and South Pacific Design Automation Conf., 13 Feb. 1998, Yokohama, Japan (IEEE, 1998), pp. 145–150. DOI: https://doi.org/10.1109/ASPDAC.1998.669434.

    Google Scholar 

  70. Chung-Yen Lu, Kuei-Ann Wen, “On the design of selective coefficient DCT module,” IEEE Trans. Circuits Systems Video Technology8, No. 2, 143 (1998). DOI: https://doi.org/10.1109/76.664099.

    Article  Google Scholar 

  71. S.-F. Hsiao, W.-R. Shiue, J.-M. Tseng, “A cost-efficient and fully-pipelinable architecture for DCT/IDCT,” IEEE Trans. Consumer Electron. 45, No. 3, 515 (1999). DOI: https://doi.org/10.1109/30.793535.

    Article  Google Scholar 

  72. K. Kim, J.-S. Koh, “An area efficient DCT architecture for MPEG-2 video encoder,” IEEE Trans. Consumer Electron. 45, No. 1, 62 (1999). DOI: https://doi.org/10.1109/30.754418.

    Article  Google Scholar 

  73. T.-S. Chang, C.-S. Kung, C.-W. Jen, “A simple processor core design for DCT/IDCT,” IEEE Trans. Circuits Syst. Video Technol. 10, No. 3, 439 (2000). DOI: https://doi.org/10.1109/76.836290.

    Article  Google Scholar 

  74. Hyesook Lim, V. Piuri, E. E. Swartzlander, “A serial-parallel architecture for two-dimensional discrete cosine and inverse discrete cosine transforms,” IEEE Trans. Computers49, No. 12, 1297 (2000). DOI: https://doi.org/10.1109/12.895848.

    Article  MathSciNet  MATH  Google Scholar 

  75. Min Jiang, Yuan Luo, Yiling Fu, Bing Yang, Baoying Zhao, Xin-an Wang, Shimin Sheng, Tianyi Zhang, “A low power 1D-DCT processor for MPEG-targeted real-time applications,” Proc. of IEEE Int. Symp. on Communications and Information Technology, 26–29 Oct. 2004, Sapporo, Japan (IEEE, 2004), Vol. 2, pp. 682–687. DOI: https://doi.org/10.1109/ISCIT.2004.1413802.

    Google Scholar 

  76. S. P. Mohanty, N. Ranganathan, K. Balakrishnan, “A dual voltage-frequency VLSI chip for image watermarking in DCT domain,” IEEE Trans. Circuits Syst. II Exp. Briefs53, No. 5, 394 (2006). DOI: https://doi.org/10.1109/TCSII.2006.870216.

    Article  Google Scholar 

  77. F. Qureshi, M. Garrido, O. Gustafsson, “Unified architecture for 2, 3, 4, 5, and 7-point DFTs based on Winograd Fourier transform algorithm,” Electron. Lett. 49, No. 5, 348 (2013). DOI: https://doi.org/10.1049/el.2012.0577.

    Article  Google Scholar 

  78. H. M. De Oliveira, R. J. Cintra, R. M. Campello de Souza, “A factorization scheme for some discrete Hartley transform matrices,” 1 (2015). arXiv:1502.01038.

    Google Scholar 

  79. A. Cariow, J. Papliñski, D. Majorkowska-Mech, “Some structures of parallel VLSI-oriented processing units for implementation of small size discrete fractional Fourier transforms,” Electronics8, No. 5, 509 (2019). DOI: https://doi.org/10.3390/electronics8050509.

    Article  Google Scholar 

  80. Yu. A. Reznik, Ravi K. Chivukula, “Design of fast transforms for high-resolution image and video coding,” Proc. SPIE 7443, Applications of Digital Image Processing XXXII, 744312 (2 Sept. 2009). DOI: https://doi.org/10.1117/12.831216.

    Google Scholar 

  81. V. Britanak, K. R. Rao, Cosine-/Sine-Modulated Filter Banks: General Properties, Fast Algorithms and Integer Approximations (Springer, 2018). DOI: https://doi.org/10.1007/978-3-319-61080-1.

    Book  MATH  Google Scholar 

  82. Trac D. Tran, Jie Liang, Chengjie Tu, “Lapped transform via time-domain pre- and post-filtering,” IEEE Trans. Signal Processing51, No. 6, 1557 (2003). DOI: https://doi.org/10.1109/TSP.2003.811222.

    Article  MathSciNet  MATH  Google Scholar 

  83. A. Þariov, D. Majorkowska-Mech, “The multilevel signal representation in discrete base of cosine functions,” Elektronika: konstrukcje technologie zastosowania48, No. 7, 20 (2007).

    Google Scholar 

  84. V. M. Chernov, M. A. Chicheva, “One-step’ short-length DCT algorithms with data representation in the direct sum of the associative algebras,” in: Sommer, G.; Daniilidis, K.; Pauli, J. (eds.), Computer Analysis of Images and Patterns. CAIP 1997. Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 1997), Vol. 1296, pp. 590–596. DOI: https://doi.org/10.1007/3-540-63460-6_167.

    Chapter  Google Scholar 

  85. A. Þariov, Algorytmiczne aspekty racjonalizacji obliczeñ w cyfrowym przetwarzaniu sygna³ów (in Polish) [Algorithmic aspects of computing rationalization in Digital Signal processing] (West Pomeranian University Press, 2012).

    Google Scholar 

  86. A. Cariow, “Strategies for the synthesis of fast algorithms for the computation of the matrix-vector products,” J. Signal Processing Theory Applications, No. 3, 1 (2014). DOI: https://doi.org/10.7726/jspta.2014.1001.

    Google Scholar 

  87. A. Graham, Kronecker Products and Matrix Calculus: With Applications (Ellis Horwood Limited, Chichester, England, 1981).

    MATH  Google Scholar 

  88. P. A. Regalia, S. K. Mitra, “Kronecker products, unitary matrices and signal processing applications,” SIAM Review31, No. 4, 586 (1989). DOI: https://doi.org/10.1137/1031127.

    Article  MathSciNet  MATH  Google Scholar 

  89. J. Granata, M. Conner, R. Tolimieri, “The tensor product: A mathematical programming language for FFTs and other fast DSP operations,” IEEE Signal Process. Mag. 9, No. 1, 40 (1992). DOI: https://doi.org/10.1109/79.109206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aleksandr Cariow, Marta Makowska or Paweł Strzelec.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2019, Vol. 62, No. 11, pp. 662–677

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cariow, A., Makowska, M. & Strzelec, P. Small-Size FDCT/IDCT Algorithms with Reduced Multiplicative Complexity. Radioelectron.Commun.Syst. 62, 559–576 (2019). https://doi.org/10.3103/S0735272719110025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272719110025

Navigation