Skip to main content
Log in

Investigation of T-Shaped Compact Dielectric Resonator Antenna for Wideband Application

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

In this paper, a novel T-shaped compact Dielectric Resonator Antenna (DRA) is proposed for wide band application. The proposed antenna covers C- and X-band. Two different techniques namely partial ground plane and multi stacked elements have been used in the designing of the proposed antenna to improve the performance of the antenna. It is observed that the air gap between two dielectric materials stacked together in DRA enhances the bandwidth of the antenna. Impedance bandwidth offered is 84% which covers a range from 4.18 to 10.27 GHz (6.09 GHz) for |S11|<-10 dB. The analysis of field lines shows that \(TE_{11\delta}^z\) mode exists at 5.66 GHz and \(TE_{12\delta}^z\) mode exists at 9.76 GHz, when it is excited by center probe feed in z direction. Maximum gain achieved over the frequency range is 4.72 dBi at 5.77 GHz and 4.3 dBi at 9.76 GHz. The maximum radiation efficiency is 95% at 5.66 GHz. The proposed antenna is simulated in CST and HFSS softwares and simulated results have been validated through the comparison of the experimental results of a fabricated prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Kaur, S. K. Aggarwal, A. De, “Performance enhancement of rectangular microstrip patch antenna using double H shaped metamaterial,” Radioelectron. Commun. Syst.59, No. 11, 496 (2016). DOI: https://doi.org/10.3103/S0735272716110030.

    Article  Google Scholar 

  2. A. Petosa, Dielectric Resonator Antenna Handbook (Artech House Pub., Norwood, 2007).

    Google Scholar 

  3. K.-M. Luk, K.-W. Leung, Dielectric Resonator Antennas (Research Studies Press Ltd, 2003).

    Google Scholar 

  4. R. K. Mongia, A. Ittibipoon, M. Cuhaci, “Low profile dielectric resonator antennas using a very high permittivity material,” Electron. Lett.30, No. 17, 1362 (1994). DOI: https://doi.org/10.1049/el:19940924.

    Article  Google Scholar 

  5. G. D. Makwana, K. J. Vinoy, “Design of a compact rectangular dielectric resonator antenna at 2.4 GHz,” PIER C11, 69 (2009). DOI: https://doi.org/10.2528/PIERC09070903.

    Article  Google Scholar 

  6. R. Chair, A. A. Kishk, K. F. Lee, “Experimental investigation for wideband perforated dielectric resonator antenna,” Electron. Lett.42, No. 3, 137 (2006). DOI: https://doi.org/10.1049/el:20063987.

    Article  Google Scholar 

  7. H. H. B. Rocha, F. N. A. Freire, R. S. T. M. Sohn; M. G. Da Silva, M. R. P. Santos, C. C. M. Junqueira, T. Cordaro, A. S. B. Sombra, “Bandwidth enhancement of stacked dielectric resonator antennas excited by a coaxial probe: an experimental and numerical investigation,” IET Microwaves, Antennas Propag.2, No. 6, 580 (Sept. 2008). DOI: https://doi.org/10.1049/iet-map:20070292.

    Article  Google Scholar 

  8. L.-N. Zhang, S.-S. Zhong, S.-Q. Xu, “Broadband U-shaped dielectric resonator antenna with elliptical patch feed,” Electron. Lett.44, No. 16, 947 (2008). DOI: https://doi.org/10.1049/el:20081253.

    Article  Google Scholar 

  9. B. Mukherjee, P. Patel, J. Mukherjee, “Hemispherical dielectric resonator antenna based on Apollonian gasket of circles—A fractal approach,” IEEE Trans. Antennas Propag.62, No. 1, 40 (Jan. 2014). DOI: https://doi.org/10.1109/TAP.2013.2287011.

    Article  Google Scholar 

  10. R. Ghosal, B. Gupta, “Design of dual wide band dielectric resonator antenna using Sierpienski fractal geometry,” Proc. of 18th Mediterranean Microwave Symp., MMS, 31 Oct.-2 Nov. 2018, Istanbul, Turkey (IEEE, 2018), pp. 75–78. DOI: https://doi.org/10.1109/MMS.2018.8611973.

    Google Scholar 

  11. Y. M. Pan, S. Y. Zheng, “A low-profile stacked dielectric resonator antenna with high-gain and wide bandwidth,” IEEE Antennas Wireless Propag. Lett.15, 68 (2016). DOI: https://doi.org/10.1109/LAWP.2015.2429686.

    Article  Google Scholar 

  12. P. Patel, B. Mukherjee, J. Mukherjee, “A compact wideband rectangular dielectric resonator antenna using perforations and edge grounding,” IEEE Antennas Wireless Propag. Lett.14, 490 (2015). DOI: https://doi.org/10.1109/LAWP.2014.2369533.

    Article  Google Scholar 

  13. Y. Gao, Z. Feng, L. Zhang, “Compact asymmetrical T-shaped dielectric resonator antenna for broadband applications,” IEEE Trans. Antennas Propag.60, No. 3, 1611 (Mar. 2012). DOI: https://doi.org/10.1109/TAP.2011.2180335.

    Article  Google Scholar 

  14. X.-L. Liang, T. A. Denidni, “Cross-T-shaped dielectric resonator antenna for wideband applications,” Electron. Lett.44, No. 20, 1176 (2008). DOI: https://doi.org/10.1049/el:20081900.

    Article  Google Scholar 

  15. F. Abushakra, A. Al-Zoubi, “Wideband vertical T-shaped dielectric resonator antennas fed by coaxial probe,” Jordan J. Electrical Engineering3, No. 4, 250 (2017). URI: http://www.ttu.edu.jo/jjee/index.php/jjee-vol-3.html.

    Google Scholar 

  16. Y.-H. Qian, Q.-X. Chu, “A broadband hybrid monopole-dielectric resonator water antenna,” IEEE Antennas Wireless Propag. Lett.16, 360 (2017). DOI: https://doi.org/10.1109/LAWP.2016.2577049.

    Article  Google Scholar 

  17. M. Zou, J. Pan, “Wide dual-band circularly polarized stacked rectangular dielectric resonator antenna,” IEEE Antennas Wireless Propag. Lett.15, 1140 (2016). DOI: https://doi.org/10.1109/LAWP.2015.2496361.

    Article  Google Scholar 

  18. M. Chauhan, B. Mukherjee, “High gain fractal cylindrical dielectric resonator antenna for UWB application,” Proc. of IEEE Radio and Antenna Days of the Indian Ocean, RADIO, 15–18 Oct. 2018, Grand Port, Mauritius (IEEE, 2018). DOI: https://doi.org/10.23919/RADIO.2018.8572414.

    Google Scholar 

  19. K. Trivedi, D. Pujara, “Design and development of ultrawideband hybrid T-shaped dielectric resonator antenna,” Proc. of 2016 IEEE Annual India Conf., 16–18 Dec. 2016, Bangalore, India (IEEE, 2016), pp. 1–4. DOI: https://doi.org/10.1109/INDICON.2016.7839122.

    Google Scholar 

  20. R. D. Gupta, M. S. Parihar, “Investigation of an asymmetrical E-shaped dielectric resonator antenna with wideband characteristics,” IET Microwaves, Antennas Propag.10, No. 12, 1292 (2016). DOI: https://doi.org/10.1049/iet-map.2016.0167.

    Article  Google Scholar 

  21. D. Soren, R. Ghatak, R. K. Mishra, D. R. Poddar, “Sierpinski carpet patterned rectangular dielectric resonator antenna for X-band application using teflon,” Radioelectron. Commun. Syst.61, No. 12, 571 (2018). DOI: https://doi.org/10.3103/S0735272718120051.

    Article  Google Scholar 

  22. A. Petosa, N. Simons, R. Siushansian, A. Ittipiboon, M. Cuhaci, “Design and analysis of multisegment dielectric resonator antennas,” IEEE Trans. Antennas Propag.48, No. 5, 738 (2000). DOI: https://doi.org/10.1109/8.855492.

    Article  Google Scholar 

  23. R. K. Mongia, A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antennas Propag.45, No. 9, 1348 (1997). DOI: https://doi.org/10.1109/8.623123.

    Article  Google Scholar 

  24. G. Bit-Babik, C. Di Nallo, A. Faraone, “Multimode dielectric resonator antenna of very high permittivity,” Proc. of IEEE Antennas Propag. Soc. Symp., 20–25 Jun. 2004, Monterey, USA (IEEE, 2004), Vol. 2, pp. 1383–1386. DOI: https://doi.org/10.1109/APS.2004.1330444.

    Google Scholar 

  25. G. Shrikanth Reddy, S. K. Mishra, S. U. Kharche, J. Mukherjee, “High gain and low cross-polar compact printed elliptical monopole UWB antenna loaded with partial ground and parasitic patches,” PIER B43, 151 (2012). DOI: https://doi.org/10.2528/PIERB12070206.

    Article  Google Scholar 

  26. J. Van Bladel, “On the resonances of a dielectric resonator of very high permittivity,” IEEE Trans. Microwave Theory Tech.23, No. 2, 199 (Feb. 1975). DOI: https://doi.org/10.1109/TMTT.1975.1128528.

    Article  Google Scholar 

  27. J. Van Bladel, “The excitation of dielectric resonators of very high permittivity,” IEEE Trans. Microwave Theory Tech.23, No. 2, 208 (Feb. 1975). DOI: https://doi.org/10.1109/TMTT.1975.1128529.

    Article  Google Scholar 

  28. M. Chauhan, A. K. Pandey, B. Mukherjee, “A novel cylindrical dielectric resonator antenna based on Fibonacci series approach,” Microwave Opt. Technol. Lett.61, No. 10, 2268 (Oct. 2019). DOI: https://doi.org/10.1002/mop.31887.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Monika Chauhan or Biswajeet Mukherjee.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2019, Vol. 62, No. 11, pp. 698–707.

The authors acknowledge the support of MPCST under Project No. A/RD/RP-2/2016-17/263. The authors also acknowledge the support of Arpita Tandy and Poonam Khsirsagar, who have made various contributions.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, M., Mukherjee, B. Investigation of T-Shaped Compact Dielectric Resonator Antenna for Wideband Application. Radioelectron.Commun.Syst. 62, 594–603 (2019). https://doi.org/10.3103/S0735272719110050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272719110050

Navigation