Skip to main content
Log in

Divisible Arcs, Divisible Codes, and the Extension Problem for Arcs and Codes

  • Coding Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

In an earlier paper we developed a unified approach to the extendability problem for arcs in PG(k - 1, q) and, equivalently, for linear codes over finite fields. We defined a special class of arcs called (t mod q)-arcs and proved that the extendabilty of a given arc depends on the structure of a special dual arc, which turns out to be a (t mod q)-arc. In this paper, we investigate the general structure of (t mod q)-arcs. We prove that every such arc is a sum of complements of hyperplanes. Furthermore, we characterize such arcs for small values of t, which in the case t = 2 gives us an alternative proof of the theorem by Maruta on the extendability of codes. This result is geometrically equivalent to the statement that every 2-quasidivisible arc in PG(k - 1, q), q ≥ 5, q odd, is extendable. Finally, we present an application of our approach to the extendability problem for caps in PG(3, q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirschfeld, J.W.P., Projective Geometries over Finite Fields, Oxford: Clarendon; New York: Oxford Univ. Press, 1998, 2nd ed.

    MATH  Google Scholar 

  2. Landjev I. and Storme L., Linear Codes and Galois Geometries, Current Research Topics in Galois Geometries, Storme L. and De Beule J., Eds., New York: Nova Sci. Publ., 2012, pp. 187–214.

    MATH  Google Scholar 

  3. MacWilliams F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz', 1979.

    MATH  Google Scholar 

  4. Heise W. and Quattrocchi P., Informations- und Codierungstheorie: mathematische Grundlagen der Daten-Kompression und -Sicherung in diskreten Kommunikationssystemen, Berlin: Springer, 1995, 3rd ed.

    Book  Google Scholar 

  5. Tsfasman M.A., Vladut S.G., and Nogin, D.Yu., Algebraic Geometrie Codes: Basic Notions, Providence, R.I.: Amer. Math. Soc, 2007.

    Book  Google Scholar 

  6. Griesmer J.H., A Bound for Error-Correcting Codes, IBM J. Res. Develop., 1960, vol. 4, no. 5, pp. 532–542.

    Article  MathSciNet  Google Scholar 

  7. Ward H.N., Divisible Codes-A Survey, Serdica Math. J., 2001, vol. 27, no. 4, pp. 263–278.

    MathSciNet  MATH  Google Scholar 

  8. Hill R. and Lizak P., Extensions of Linear Codes, in Proc. Int. Symp. on Information Theory (ISIT'1995), Whistler, BC, Canada, Sept. 17–22, 1995, p. 345.

    Chapter  Google Scholar 

  9. Hill R., An Extension Theorem for Linear Codes, Des. Codes Cryptogr., 1999, vol. 17, no. 1–3, pp 151–157.

    Article  MathSciNet  Google Scholar 

  10. Maruta T., On the Extendability of Linear Codes, Finite Fields Appl, 2001, vol. 7, no. 2, pp. 350–354.

    Article  MathSciNet  Google Scholar 

  11. Maruta T., Extendability of Linear Codes over GF(q) with Minimum Distance d, gcd(d, q) = 1, Discrete Math., 2003, vol. 266, no. 1–3, pp. 377–385.

    Article  MathSciNet  Google Scholar 

  12. Maruta T., A New Extension Theorem for Linear Codes, Finite Fields Appl, 2004, vol. 10, no. 4, pp. 674–685.

    Article  MathSciNet  Google Scholar 

  13. Maruta T., Extension Theorems for Linear Codes over Finite Fields, J. Geom., 2011, vol. 101, no. 1–2, pp. 173–183.

    Article  MathSciNet  Google Scholar 

  14. Yoshida Y. and Maruta T., An Extension Theorem for [n, k, d]q Codes with gcd(d, q) = 2, Australas. J. Combin., 2010, vol. 48, pp. 117–131.

    MathSciNet  MATH  Google Scholar 

  15. Landjev I., Rousseva A., and Storme L., On the Extendability of Quasidivisible Griesmer Arcs, Des. Codes Cryptogr., 2016, vol. 79, no. 3, pp. 535–547.

    Article  MathSciNet  Google Scholar 

  16. Dodunekov S. and Simonis J., Codes and Projective Multisets, Electron. J. Combin., 1998, vol. 5, no. 1, Research Paper R37.

    Google Scholar 

  17. Landjev I., The Geometric Approach to Linear Codes, Finite Geometries (Proc. 4th Isle of Thorns Conf, Chelwood Gate, UK, July 16–21, 2000), Blokhuis A., Hirschfeld, J.W.P., Jungnickel D., and Thas J.A., Eds., Dordrecht: Kluwer, 2001, pp. 247–257.

    Chapter  Google Scholar 

  18. Hamada N., The Rank of the Incidence Matrix of Points and d-Flats in Finite Geometries, J. Sci. Hiroshima Univ. Ser. A-I Math., 1968, vol. 32, no. 2, pp. 381–396.

    Article  MathSciNet  Google Scholar 

  19. Ceccherini P.V. and Hirschfeld, J.W.P., The Dimension of Projective Geometry Codes, Discrete Math., 1992, vol. 106/107, pp. 117–126.

    Article  MathSciNet  Google Scholar 

  20. Goethals, J.-M. and Delsarte P., On a Class of Majority-Logic Decodable Cyclic Codes, IEEE Trans. Inform. Theory, 1968, vol. 14, no. 2, pp. 182–188.

    Article  MathSciNet  Google Scholar 

  21. MacWilliams F.J. and Mann H.B., On the p-Rank of the Design Matrix of a Difference Set, Inform. Control, 1968, vol. 12, no. 5, pp. 474–488.

    Article  MathSciNet  Google Scholar 

  22. Smith, K.J.C., On the p-Rank of the Incidence Matrix of Points and Hyperplanes in a Finfite Projective Geometry, J. Combin. Theory, 1969, vol. 7, no. 2, pp. 122–129.

    Article  Google Scholar 

  23. Blokhuis A. and Moorhouse G.E., Some p-Ranks Related to Orthogonal Spaces, J. Algebraic Combin., 1995, vol. 4, no. 4, pp. 295–316.

    Article  MathSciNet  Google Scholar 

  24. Ball S., Hill R., Landjev I., and Ward H., On (q 2 + q + 2, q + 2)-Arcs in the Projective Plane PG(2, q), Des. Codes Cryptogr., 2001, vol. 24, no. 2, pp. 205–224.

    Article  MathSciNet  Google Scholar 

  25. Hirschfeld, J.W.P., Finite Projective Spaces in Three Dimensions, Oxford: Oxford Univ. Press, 1985.

    MATH  Google Scholar 

  26. Bruen A., Baer Subplanes and Blocking Sets, Bull. Amer. Math. Soc, 1970, vol. 76, no. 2, pp. 342–344.

    Article  MathSciNet  Google Scholar 

  27. Polverino, O. Small Blocking Sets in PG(2, p 3), Des. Codes Cryptogr., 2000, vol. 20, no. 3, pp. 319–324.

    Article  MathSciNet  Google Scholar 

  28. Sziklai P. and Szőnyi T., Blocking Sets and Algebraic Curves, Rend. Circ. Mat. Palermo (2) Suppl., 1998, no. 51, pp. 71–86.

    MathSciNet  MATH  Google Scholar 

  29. Landjev I. and Vandendriessche P., A Study of (xv t , x-y t-t)-Minihypers in PG(t, q), J. Combin. Theory Ser. A, 2012, pp. 119, no. 6, pp. 1123–1131.

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This research has been supported by the Science Research Fund of Sofia University under Contract no. 80-10-81/15.04.2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Landjev.

Additional information

Russian Text © The Author(s), 2019, published in Problemy Peredachi Informatsii, 2019, Vol. 55, No. 3, pp. 30–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landjev, I., Rousseva, A. Divisible Arcs, Divisible Codes, and the Extension Problem for Arcs and Codes. Probl Inf Transm 55, 226–240 (2019). https://doi.org/10.1134/S0032946019030037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946019030037

Key words

Navigation