Skip to main content
Log in

Some Exact Solutions to the Problem of a Liquid Flow in a Contracting Elastic Vessel

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

In this paper, we consider some exact solutions of the hemodynamic equations in a contracting vessel in a quasi-one-dimensional approximation in relation to the problems arising in the description of the lymph flow. Solutions for the linearized problem in the case of forced small contractions of the vessel’s lumen are given. An analytical solution of a nonlinear system is obtained and studied at the dependence of the vessel’s cross section only on time. Exact solutions are reproduced in the numerical calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. I. Borziak, V. Ya. Bocharov, and M. R. Sapin, Human Anatomy (Meditsina, Moscow, 1993) [in Russian].

    Google Scholar 

  2. V. M. Petrenko, Lymphatic System. Anatomy and Development (DEAN, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  3. N. P. Reddy, T. A. Krouskop, and P. H. Newell, Jr., “Biomechanics of a lymphatic vessel,” Blood Vessels 12, 261–278 (1975).

    Google Scholar 

  4. C. M. Quick, A. M. Venugopal, A. A. Gashev, D. C. Zawieja, and R. H. Stewart, “Intrinsic pump-conduit behavior of lymphangions,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1510–R1518 (2007).

    Article  Google Scholar 

  5. C. D. Bertram, C. Macaskill, and J. E. Moore, Jr., “Simulation of a chain of collapsible contracting lymphangions with progressive valve closure,” J. Biomech. Eng. 133, 011008 (2011).

    Article  Google Scholar 

  6. A. J. Macdonald, K. P. Arkill, G. R. Tabor, N. G. McHale, and C. P. Winlove, “Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements,” Am. J. Physiol. Heart. Circ. Physiol. 295, 305–313 (2008).

    Article  Google Scholar 

  7. E. Rahbar and J. E. Moore, Jr., “A model of a radially expanding and contracting lymphangion,” J. Biomech. 44, 1001–1007 (2011).

    Article  Google Scholar 

  8. S. Uchida and H. Aoki, “Unsteady flows in a semi-infinite contracting or expanding pipe,” J. Fluid Mech. 82, 371–387 (1977).

    Article  MathSciNet  Google Scholar 

  9. M. G. Blyth, P. Hall, and D. T. Papageorgiou, “Chaotic flows in pulsating cylindrical tubes: a class of exact Navier-Stokes solutions,” J. Fluid Mech. 481, 187–213 (2003).

    Article  MathSciNet  Google Scholar 

  10. F. M. Skalak and C. Y. Wang, “On the unsteady squeezing of a viscous fluid from a tube,” J. Austral. Math. Soc. 21, 65–74 (1979).

    Article  Google Scholar 

  11. O. D. Makinde, “Collapsible tube flow: a mathematical model,” Rom. J. Phys., 493–506 (2005).

  12. D. V. Kniazev and I. Yu. Kolpakov, “The exact solutions of the problem of a viscous fluid flow in a cylindrical domain with varying radius,” Nelin. Din. 11 (1), 89–97 (2015).

    Article  Google Scholar 

  13. S. A. Regirer, “Quasi-one-dimensional theory of peristaltic flows,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 89–97 (1984).

  14. O. A. Dudchenko, “Peristaltic transport in biological systems: basic models and explicit asymptotic solutions,” Extended Abstract of Cand. Sci. (Phys. Math.) Dissertation (Moscow, MFTI, 2012).

  15. M. V. Abakumov, N. B. Esikova, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, and A. P. Favorskii, “A difference scheme for solving hemodynamic problems on a graph,” Preprint (Dialog-MGU, Moscow, 1998).

    Google Scholar 

  16. M. V. Abakumov, I. V. Ashmetkov, N. B. Esikova, V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorskii, and A. B. Khrulenko, “Strategy of mathematical cardiovascular system modeling,” Mat. Model. 12 (2), 106–117 (2000).

    MATH  Google Scholar 

  17. I. V. Ashmetkov, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, “Numerical study of the properties of a difference scheme for hemodynamic equations,” Preprint (Dialog MGU, Moscow, 1999).

    MATH  Google Scholar 

  18. I. V. Ashmetkov, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, “Analysis and comparison of some analytic and numerical solutions of hemodynamic problems,” Differ. Equat. 36, 1021–1026 (2000).

    Article  Google Scholar 

  19. M. V. Abakumov, K. V. Gavrilyuk, N. B. Esikova, A. V. Lukshin, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, and A. P. Favorskii, “Mathematical model of the hemodynamics of the cardio-vascular system,” Differ. Equat. 33, 895–901 (1997).

    MathSciNet  MATH  Google Scholar 

  20. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Gas Dynamics Problems (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  21. E. C. Dauenhauer and J. Majdalani, “Unsteady flows in semi-infinite expanding channels with wall injection,” in Proceedings of the 30th Fluid Dynamics Conference, Fluid Dynamics and Colocated Conferences,1999.

  22. I. V. Ashmetkov, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, “Partial solutions of hemodynamic equations,” Preprint (Dialog-MGU, Moscow, 1999).

    MATH  Google Scholar 

  23. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Mosk. Gos. Univ., Moscow, 1999; Dover, New York, 2011).

  24. A. S. Mozokhina and S. I. Mukhin, “Quasi-one-dimensional flow of a fluid with anisotropic viscosity in a pulsating vessel,” Differ. Equat. 54, 938–944 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Mozokhina or S. I. Mukhin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozokhina, A.S., Mukhin, S.I. Some Exact Solutions to the Problem of a Liquid Flow in a Contracting Elastic Vessel. Math Models Comput Simul 11, 894–904 (2019). https://doi.org/10.1134/S2070048219060140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048219060140

Keywords:

Navigation