Skip to main content
Log in

Error Estimates for Backward Euler Finite Element Approximations of American Call Option Valuation

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We investigate the degenerate parabolic variational inequality arising from the local volatility model for the American stock call option with continuous dividend payout. The problem, originally defined on the positive semiaxis, is formulated in a bounded domain with exact Dirichlet boundary condition under natural assumptions about the regularity of the data. The smoothness of the exact solution of the formulated variational inequality, which is necessary for studying the accuracy of the backward Euler finite element approximation, is established. For an approximate solution, the error estimate \(O(h+\tau^{\min\{\alpha,3/4\}})\) in the energy norm is obtained under the assumption that the coefficients of the differential operator are piecewise \(\alpha\)-Holder-continuous with respect to time variable, where \(h\) and \(\tau\) denote the mesh parameters in space and time, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Black and M. Scholes, ‘‘The pricing of options and corporate liabilities,’’ J. Polit. Econ. 81, 637–659 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation (Oxford Financial, Oxford, 1993).

    MATH  Google Scholar 

  3. Y. Achdou and O. Pironneau, Computational Methods for Option Pricing (Soc. Ind. Appl. Math., Philadelphia, 2005).

    Book  MATH  Google Scholar 

  4. A. Bensoussan and J. L. Lions, Applications of Variational Inequalities in Stochastic Control (North-Holland, Amsterdam, 1971).

    Google Scholar 

  5. Y. K. Kwok, Mathematical Models of Financial Derivatives (Springer Finance, Singapore, 1998).

    MATH  Google Scholar 

  6. L. Jiang and M. Dai, ‘‘Convergence of binomial tree methods for European/American path-dependent options,’’ SIAM J. Numer. Anal. 42, 1094–1109 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Boyle, M. Broadie, and P. Glasserman, ‘‘Monte Carlo methods for security pricing,’’ J. Econ. Dyn. Control 21, 1267–1321 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. J. Brennan and E. Schwartz, ‘‘The valuation of the American put option,’’ J. Finance 32, 449–462 (1977).

    Article  Google Scholar 

  9. D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach (Wiley, Hoboken, 2006).

    Book  MATH  Google Scholar 

  10. J. Berton and R. Eymard, ‘‘Finite volume methods for the valuation of American options,’’ ESAIM: M2AN 2, 311–330 (2006).

  11. J. N. Dewynne, S. D. Howison, I. Rupf, and P. Wilmott, ‘‘Some mathematical results in the pricing of American options,’’ Eur. J. Appl. Math. 4, 381–398 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Allegretto, Y. Lin, and H. Yang, ‘‘A fast and highly accurate numerical method for the evaluation of American options,’’ Dyn. Contin. Discrete Impuls. Syst., Ser. B: Appl. Algorithms 8, 127–138 (2001).

    Google Scholar 

  13. T. Zhang, ‘‘The numerical methods for American options pricing,’’ Acta Math. Appl. Sin. 25, 113–122 (2002).

    MathSciNet  MATH  Google Scholar 

  14. I. Sapariuc, M. D. Marcozzi, and J. E. Flaherty, ‘‘A numerical analysis of variational valuation techniques for derivative securities,’’ Appl. Math. Comput. 159, 171–198 (2004).

    MathSciNet  MATH  Google Scholar 

  15. Y. Achdou and O. Pironneau, ‘‘Numerical procedure for calibration of volatility with American options,’’ Appl. Math. Finance 3, 201–241 (2005).

    Article  MATH  Google Scholar 

  16. J. Topper, Financial Engineering with Finite Elements (Wiley, Hoboken, 2005).

    Google Scholar 

  17. M. Broadie and J. Detemple, ‘‘American option valuation: New bounds, approximations, and a comparison of existing methods,’’ Rev. Financial Studies 9, 1211–1250 (1996).

    Article  Google Scholar 

  18. P. Jaillet, D. Lamberton, and B. Lapeyre, ‘‘Variational inequalities and the pricing of American options,’’ Acta Appl. Math. 3, 263–289 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Allegretto, Y. Lin, and H. Yang, ‘‘Finite element error estimates for a nonlocal problem in American option valuation,’’ SIAM J. Numer. Anal. 39, 834–857 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Liu and P. Zhang, ‘‘Numerical methods for option pricing problems,’’ J. Syst. Sci. Math. Sci. 12, 12–20 (2003).

    Google Scholar 

  21. Y. Achdou, ‘‘An inverse problem for a parabolic variational inequality arising in volatility calibration with American options,’’ SIAM J. Control Optim. 5, 1583–1615 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Jiang and M. Dai, ‘‘Convergence of the explicit difference scheme and binomial tree method for American options,’’ J. Comput. Math. 22, 371–380 (2004).

    MathSciNet  MATH  Google Scholar 

  23. C. Johnson, ‘‘A convergence estimate for an approximation of a parabolic variational inequality,’’ SIAM J. Numer. Anal. 4, 599–606 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Scarpini and M. A. Vivaldi, ‘‘Evaluation de l’erreur d’approximation pour une inéquation parabolique relative aux convexes depéndant du temps,’’ Appl. Math. Optim. 4, 121–138 (1978).

    Article  MATH  Google Scholar 

  25. P. Nair and A. K. Pani, ‘‘Finite element methods for parabolic bariational inequalities with a Volterra term,’’ Numer. Funct. Anal. Optim. 24, 107–127 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Vuik, ‘‘An \(L_{2}\)-Error estimate for an approximation of the solution of a parabolic variational inequality,’’ Numer. Math. 57, 453–471 (1990).

    MathSciNet  MATH  Google Scholar 

  27. A. Ženíšek, ‘‘Approximation of parabolic variational inequalities,’’ Apl. Mat. 30, 11–35 (1985).

    MathSciNet  MATH  Google Scholar 

  28. R. Z. Dautov and A. I. Mikheeva, ‘‘Accuracy of discrete schemes for a class of abstract evolution inequalities,’’ Differ. Equat. 7, 824–834 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Dautov and A. Lapin, ‘‘Sharp error estimate for implicit finite element scheme for American put option,’’ Russ. J. Numer. Anal. Math. Model. 2, 85–94 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Savaré, ‘‘Weak solutions and maximal regularity for abstract evolution inequalities,’’ Adv. Math. Sci. Appl. 6, 377–418 (1996).

    MathSciNet  MATH  Google Scholar 

  31. R. Z. Dautov and A. I. Mikheeva, ‘‘Implicit Euler scheme for an abstract evolution inequality,’’ Differ. Equat. 8, 1130–1138 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Z. Dautov and A. I. Mikheeva, ‘‘Exact penalty operators and regularization of parabolic variational inequalities with an obstacle inside a domain,’’ Differ. Equat. 1, 77–84 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  33. L. D. Kudryavtsev, ‘‘On equivalent norms in weighted spaces,’’ Proc. Steklov Inst. Math. 170, 185–218 (1987).

    MATH  Google Scholar 

  34. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology (Springer, Berlin, Heidelberg, 1992), Vol. 5.

    MATH  Google Scholar 

  35. H. Gajewskii, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie, Berlin, 1974).

    MATH  Google Scholar 

  36. A. D. Lyashko, Sh. I. Tayupov, and M. R. Timerbaev, ‘‘High-accuracy schemes of the finite element method for systems of degenerate elliptic equations on an interval,’’ Russ. Math. 7, 17–27 (2009).

    Article  MATH  Google Scholar 

  37. H. Brezis, ‘‘Problèmes Unilatéraux,’’ J. Math. Pures Appl. 57, 1–168 (1972).

    MATH  Google Scholar 

Download references

Funding

This work was supported by Russian Foundation for Basic Research, project 19-01-00431.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Z. Dautov or A. V. Lapin.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dautov, R.Z., Lapin, A.V. Error Estimates for Backward Euler Finite Element Approximations of American Call Option Valuation. Lobachevskii J Math 41, 475–490 (2020). https://doi.org/10.1134/S199508022004006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022004006X

Keywords and phrases:

Navigation