Skip to main content
Log in

Network Management 2030: Operations and Control of Network 2030 Services

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The networking landscape is expected to undergo profound changes over the course of the next decade. New network services are expected to emerge that will enable new applications such as the Tactile Internet, Holographic-Type Communications, or Tele-Driving. Many of these services will be characterized by very high degrees of precision with which end-to-end service levels must be supported. This will have profound implications on the management of those networks and services, from the need to support new methods for assurance of ultra-high-precision services to the need for new network programming models that will allow the industry to move beyond DevOps and SDN towards User-Defined Networking. This article analyzes those implications and provides an overview of challenges along with possible solution approaches and opportunities for research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huston, G.: The death of transit and beyond. https://www.enog.org/wp-content/uploads/presentations/enog-13/3-2017-05-25-death-of-transit.pdf (2017). Accessed 4 Dec 2019

  2. https://quoteinvestigator.com/2013/10/20/no-predict/. Accessed 30 Jan 2019

  3. Network 2030—a blueprint of technology, applications and markeet drivers towards the year 2030 and beyond. White Paper, https://extranet.itu.int/sites/itu-t/focusgroups/net-2030/SitePages/White%20Paper.aspx. ITU-T FG-NET-2030, (2019)

  4. ITU-T FG-NET2030: New services and capabilities for network 2030: description, technical gap and performance target analysis. FG-NET2030 document NET2030-O-027, (2019)

  5. O’Brien, C: Why 6G research is starting before we have 5G. https://venturebeat.com/2019/03/21/6g-research-starting-before-5g/). Venturebeat, (2019)

  6. Li, Z., Shariatmadari, H., Singh, B., Uusitalo, M.: 5G URLLC: design challenges and system concepts. 2018 in 15th International Symposium on Wireless Communication Systems (ISWCS), IEEE, August 2018

  7. Clemm, A., Torres Vega, M., Kumar Ravuri, H., Wauters, T., De Turck, F.: Towards truly immersive holographic-type communication: challenges and solutions. IEEE Commun Mag. 58(1), 93–99 (2020)

    Article  Google Scholar 

  8. Zhou, K., Liu, T., Zhou, L.: Industry 4.0: towards future industrial opportunities and challenges. in 12th International Conference on Fuzzy Systems and Knowledge Discovery (FKSD), IEEE, (2015)

  9. Gharibi, M., Boutaba, R., Waslander, S.: Internet of drones. IEEE Access 4, 1148–1162 (2016)

    Article  Google Scholar 

  10. Guidotti, A., Vanelli-Coralli, A., Foggi, T., Colavolpe, G., Caus, M., Bas, J., Cioni, S., Modenini, A.: LTE-based satellite communications in LEO mega-constellations. Int. J. Satell. Commun. Netw. 37(4), 316–330 (2019)

    Article  Google Scholar 

  11. Why the quantum internet should be built in space. https://www.technologyreview.com/s/614994/why-the-quantum-internet-should-be-built-in-space/. MIT Technology Review, (2020)

  12. Khatri, S., Brady, A., Desporte, R., Bart, M., Dowling, J.: Spooky action at a global distance—resource-rate analysis of a space-based entablement-distribution network for the quantum internet. arXiv preprint arXiv:1912.06678 [quant-ph], (2019)

  13. Ready for 6G? How AI will shape the network of the future. https://www.technologyreview.com/s/613338/ready-for-6g-how-ai-will-shape-the-network-of-the-future/. MIT Technology Review, (2019)

  14. Iyengar, J., Thomson, M.: QUIC: A UDP-based multiplexed and secure transport. IETF draft-ietf-quick-transport-25, (2020)

  15. Malcomson, S.: Splinternet: How geopolitics and commerce are fragmenting the World Wide Web. ISBN 978-1-682190-30-2, OR Books, (2016)

  16. General Data Protection Regulation. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation. (2019)

  17. Hedayat, K., Krzanowski, R., Morton, A., Yum, K., Babiarz, J.: A two-way active measurement protocol (TWAMP). IETF RFC 5357, (2008)

  18. Chiba, M., Clemm, A., Medley, S., Salowey, J., Thomare, S., Yedavalli, E.: Cisco service-level assurance protocol. IETF RFC 6812, (2013)

  19. Fioccola, G., Capello, A., Cociglio, M., Castaldelli, L., Chen, M., Zheng, L., Mirsky, G., Mizrahi, T.: Alternate-marking method for passive and hybrid performance monitoring. IETF RFC 8321, (2018)

  20. Brockners, F., Bhandari, S., Pignataro, C., Gredler, H., Leddy, J., Youell, S., Mizrahi, T., Mozes, D., Lapukhov, P., Chang, R., Bernier, D., Lemon, J.: Data fields for In-situ OAM. Internet Draft draft-ietf-ippm-ioam-data-08, IETF, (2019)

  21. Clemm, A., Voit, E.: Subscription to YANG notifications for datastore updates. IETF RFC 8641, (2019)

  22. Clemm, A., Chandramouli, M., Krishnamurthy, S.: DNA: an SDN framework for distributed network analytics. in 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), (2015)

  23. Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. in Network and Distributed System Security Symposium (NDSS) (2014)

  24. Clemm, A., Chunduri, U.: Network-programmable operational flow profiling. IEEE Commun. Mag. 57(7), 72–77 (2019)

    Article  Google Scholar 

  25. Clemm, A., Ciavaglia, L., Granville, L., Tantsura, J.: Intent-based networking—concepts and overview. draft-clemm-nmrg-dist-intent-03, IETF, (2019)

  26. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R., Slominski, A., Suter, P.: Serverless computing: current trends and open problems. in Research Advances in Cloud Computing, Springer, Singapore, (2017)

  27. Boutaba, R., Aib, I.: Policy-based management: a historical perspective. J. Netw. Syst. Manag. 15(4), 447–480 (2007)

    Article  Google Scholar 

  28. Dobson, S., Denazis, S., Fernandez, A., Gaıti, D., Gelenbe, E., Massacci, et al.: A survey of autonomic communications. ACM Trans. Auton. Adapt. Syst. 1(2), 223–259 (2006)

    Article  Google Scholar 

  29. Clark, D., Partridge, C., Ramming, J.C., Wroclawski, J.T.: A knowledge plane for the internet. ACM SIGCOMM, Karlsruhe, Germany, (2003)

  30. Juniper Networks: The self-driving network. White paper, (2017)

  31. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can Homomorphic Encryption be Practical? in 3rd ACM Workshop on Cloud Computing Security (CCSW’11), Chicago, IL, (2011)

  32. Brockners, F., Bhandari, S., Mizrahi, T., Dara, S., Youell, S.: Proof of Transit. draft-ietf-sfc-proof-of-transit-04, IETF, (2019)

  33. Li, R., Clemm, A., Chunduri, U., Dong, L., Makhijani, K.: A new framework and protocol for future networking applications. in ACM SIGCOMM Workshop on Networking for Emerging Applications and Technologies (NEAT), Budapest, Hungary, (2018)

  34. Tulumello, A., Belocchi, G., Bonola, M., Pontarelli, S., Bianchi, G.: Pushing services to the edge using a stateful programmable dataplane. in 2019 European Conference on Networks and Communications (EuCNC), Valencia, Spain, pp. 389–393. (2019)

  35. Zhani, M.F., Elbakoury, H.: FlexNGIA: a flexible internet architecture for the next-generation tactile internet. arXiv 1905.07137, (2019)

  36. Chowdhury, S.R., Bian, A.H., Bai, T., Boutaba, R.: μNF: A Disaggregated Packet Processing Architecture. in IEEE Conference on Network Softwarization (NetSoft 2019), Paris, France, (2019)

  37. Ghrada, N., Zhani, M.F., Elkhatib, Y.: Price and performance of cloud–hosted virtual network functions: analysis and future challenges. in IEEE Performance Issues in Virtualized Environments and Software Defined Networking (PVE-SDN NetSoft 2018), Montreal, Canada, (2018)

  38. Rosa, R., Rothenberg, C.E.: Automated VNF Testing with Gym: A Benchmarking Use Case. 1–2. https://doi.org/10.23919/tma.2018.8506566. (2018)

  39. Sivaraman, A. Subramanian, S., Alizadeh, M., Chole, S., Chuang, S., Agrawal, A., Galakrishnan, H., Edsall, T., Katti, S., McKeown, N.: Programmable packet scheduling at line rate. in ACM SIGCOMM, Florianapolis, Brazil, (2016)

  40. Clemm, A., Eckert, T: High-Precision Latency Forwarding over Packet-Programmable Networks. in IEEE/IFIP Network Operations and Management Symposium (NOMS), Budapest, Hungary, (2020) (to appear)

  41. Boutaba, R., Salahuddin, M.A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., Caicedo, O.M.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl. 9, 16 (2018)

    Article  Google Scholar 

  42. Chowdhury, S.R., Salahuddin, M.A., Limam, N., Boutaba, R.: Re-architecting NFV ecosystem with microservices: state-of-the-art and research challenges. IEEE Netw. 33(3), 168–176 (2019)

    Article  Google Scholar 

  43. Potharaju, R., Jain, N.: Demystifying the dark side of the middle: a field study of middlebox failures in datacenters. in ACM Internet Measurement Conference, Barcelona, Spain, (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Clemm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemm, A., Zhani, M.F. & Boutaba, R. Network Management 2030: Operations and Control of Network 2030 Services. J Netw Syst Manage 28, 721–750 (2020). https://doi.org/10.1007/s10922-020-09517-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-020-09517-0

Keywords

Navigation