Skip to main content
Log in

Using an Iterative Reallocation Partitioning Algorithm to Verify Test Multidimensionality

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

This article addresses the issue of assigning items to different test dimensions (e.g., determining which dimension an item belongs to) with cluster analysis. Previously, hierarchical methods have been used (Roussos et al. 1997); however, the findings here suggest that an iterative reallocation partitioning (IRP) algorithm provides interpretively similar solutions and statistically better solutions to the problem. More importantly, it is shown that the inherent nature of locally optimal solutions in the IRP algorithm leads to a method that aids in determining the appropriateness of performing a cluster analysis—a feature that is lacking in the standard hierarchical methods currently in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arabie, P., & Hubert, L. (1996). An overview of combinatorial data analysis. In Arabie, P., Hubert, L.J., De Soete, G., et al. (Eds.) Clustering and classification (pp. 5–63). River Edge: World Scientific.

  • Baker, F.B., & Hubert, L.J. (1975). Measuring the power of hierarchical cluster analyis. Journal of the American Statistical Association, 70, 31–38.

    Article  Google Scholar 

  • Batagelj, V., Ferligoj, A., Doreian, P. (1992). Direct and indirect methods for structural equivalence. Social Networks, 14, 63–90.

    Article  Google Scholar 

  • Brusco, M.J. (2004). Clustering binary data in the presence of masking variables. Psychological Methods, 9, 510–523.

    Article  Google Scholar 

  • Cormack, R.M. (1971). A review of classification. Journal of the Royal Statistical Society, Series A, 134, 321–367.

    Article  MathSciNet  Google Scholar 

  • De La Torre, J., & Douglas, J.A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333–353.

    Article  MathSciNet  Google Scholar 

  • Ferligoj, A., Batagelj, V., Doreian, P. (1994). On connecting network analysis and cluster analysis. In Fischer, G.H., Laming, D., et al. (Eds.) Contributions to mathematical psychology, psychometrics, and methodology (pp. 329–344). New York: Springer.

    Google Scholar 

  • Gordon, A. D. (1987). A review of hierarchical classification. Journal of the Royal Statistical Society, Series A, 150, 119–137.

    Article  MathSciNet  Google Scholar 

  • Gordon, A.D. (1996). Hierarchical classification. In Arabie, P., Hubert, L.J., De Soete, G., et al. (Eds.) Clustering and classification (pp. 65–121). River Edge: World Science.

  • Gower, J.C., & Legendre, P. (1986). Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification, 3, 5–48.

    Article  MathSciNet  Google Scholar 

  • Hartigan, J.A. (1975). Clustering algorithms. New York: Wiley.

    MATH  Google Scholar 

  • Hartigan, J., & Wong, M.A. (1979). Algorithm AS136: a k-means clustering algorithm. Applied Statistics, 28, 100–108.

    Article  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

    Article  Google Scholar 

  • Hubert, L., & Arabie, P. (1986). Comparing partitions. In Gaul, W., Schader, M., et al. (Eds.) Classification as a tool of research (pp. 209–215). North-Holland: Elsevier Science.

  • Hubert, L.J., & Levin, J.R. (1976). A general statistical framework for assessing categorical clustering in free recall. Psychological Bulletin, 83, 1072–1080.

    Article  Google Scholar 

  • Lance, G.N., & Williams, W.T. (1966). A generalised sorting strategy for computer classifications. Nature, 212, 218.

    Article  Google Scholar 

  • Lance, G.N., & Williams, W.T. (1967). A general theory of classificatory strategies I. Hierarchical systems. The Computer Journal, 9, 373–380.

    Article  Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Le, L.M., Neyman, C.J., et al. (Eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 281–297). Berkeley: University of California Press.

  • McDonald, R.P. (1967). Nonlinear factor analysis. Psychometric monographs (No. 15).

  • McQuitty, L.L. (1960). Hierarchical linkage analysis for the isolation of types. Educational and Psychological Measurement, 20, 55–67.

    Article  Google Scholar 

  • Milligan, G.W. (1996). Clustering validation, results and implications for applied analysis. In Arabie, P., Hubert, L.J., De Soete, G., et al. (Eds.) Clustering and classification (pp. 341–375). River Edge: World Scientific.

    Chapter  Google Scholar 

  • Milligan, G.W., & Cooper, M.C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159–179.

    Article  Google Scholar 

  • Milligan, G.W., & Cooper, M.C. (1986). A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21, 441–458.

    Article  Google Scholar 

  • Nandakumar, R., & Stout, W.F. (1993). Refinements of Stout’s procedure for assessing latent trait unidimensionality. Journal of Educational Statistics, 18, 41–68.

    Google Scholar 

  • Reckase, M.D., & McKinley, R.L. (1991). The discriminating power of items that measure more than one dimension. Applied Psychological Measurement, 15, 361–373.

    Article  Google Scholar 

  • Roussos, L.A., Stout, W.F., Marden, J.I. (1997). Using new proximity measures with hierarchical cluster analysis to detect multidimensionality. Journal of Educational Measurement, 35, 1–30.

    Article  Google Scholar 

  • Rutherford, A. (2001). Introducing ANOVA and ANCOVA: A GLM approach. Thousand Oaks: Sage.

    MATH  Google Scholar 

  • Sneath, P.H.A. (1957). The application of computers in taxonomy. Journal of General Microbiology, 17, 201–226.

    Article  Google Scholar 

  • Sokal, R.R., & Michener, C.D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.

    Google Scholar 

  • Steinley, D. (2003). K-means clustering: What you don’t know may hurt you. Psychological Methods, 8, 294–304.

    Article  Google Scholar 

  • Steinley, D. (2004). Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods, 9, 386–396.

    Article  Google Scholar 

  • Steinley, D. (2006b). Profiling local optima in K-means clustering: Developing a diagnostic technique. Psychological Methods, 11, 178–192.

    Article  Google Scholar 

  • Steinley, D., & Henson, R. (2005). An analytic method for clusters with known overlap. Manuscript submitted for publication.

  • Stout, W.F. (1987). A nonparametric approach for assessing latent trait dimensionality. Psychometrika, 52, 589–617.

    Article  MathSciNet  Google Scholar 

  • Stout, W.F., Habing, B., Douglas, J., Kim, H.R., Roussos, L., Zhang, J. (1996). Conditional covariance based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20, 331–354.

    Article  Google Scholar 

  • Tatsouka, C. (2002). Data analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society Series C, 51, 337–350.

    Article  MathSciNet  Google Scholar 

  • Tatsouka, K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In Frederiksen, N., Glaser, R., Lesgold, A., Safto, M., et al. (Eds.) Monitoring skills and knowledge acquisition (pp. 453–488). Hillsdale: Erlbaum.

  • van Abswoude, A.A.H., van der Ark, L.A., Sijtsma, K. (2004). A comparative study of test data dimensionality assessment procedures under nonparametric IRT models. Applied Psychological Measurement, 28, 3–24.

    Article  MathSciNet  Google Scholar 

  • Ward, J.H. Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  MathSciNet  Google Scholar 

  • Zhang, J., & Stout, W. (1999). The theoretical detect index of dimensionality and its application to approximate simple structure. Psychometrika, 63, 213–249.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank Lawrence Hubert and Louis Roussos for comments and suggestions on earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Steinley.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinley, D.L., Brusco, M.J. Using an Iterative Reallocation Partitioning Algorithm to Verify Test Multidimensionality. J Classif 36, 397–413 (2019). https://doi.org/10.1007/s00357-019-09347-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-019-09347-z

Keywords

Navigation