Skip to main content
Log in

Badly approximable points on manifolds and unipotent orbits in homogeneous spaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the weighted n-dimensional badly approximable points on manifolds. Given a \(C^n\) differentiable non-degenerate submanifold \({\mathcal {U}} \subset {\mathbb {R}}^n\), we will show that any countable intersection of the sets of the weighted badly approximable points on \({\mathcal {U}}\) has full Hausdorff dimension. This strengthens a result of Beresnevich (Invent Math 202(3):1199–1240, 2015) by removing the condition on weights and weakening the smoothness condition on manifolds. Compared to the work of Beresnevich, our approach relies on homogeneous dynamics. It turns out that in order to solve this problem, it is crucial to study the distribution of long pieces of unipotent orbits in homogeneous spaces. The proof relies on the linearization technique and representations of \(\mathrm {SL}(n+1,{\mathbb {R}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. An, V. Beresnevich, and S. Velani. Badly approximable points on planar curves and winning. Advances in Mathematics, 324 (2018), 148–202

    Article  MathSciNet  MATH  Google Scholar 

  2. J. An. Badziahin-Pollington-Velani’s theorem and Schmidt’s game. Bulletin of the London Mathematical Society, (4)45 (2013), 721–733

    Article  MathSciNet  MATH  Google Scholar 

  3. J. An. \(2\)-dimensional badly approximable vectors and Schmidt’s game. Duke Math. J., (2)165 (2016), 267–284, 02

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Beresnevich. Badly approximable points on manifolds. Inventiones Mathematicae, (3)202 (2015), 1199–1240

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Broderick, L. Fishman, D. Kleinbock, A. Reich, and B. Weiss. The set of badly approximable vectors is strongly C1 incompressible. Mathematical Proceedings of the Cambridge Philosophical Society, (2)153 (2012), 319-339

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Badziahin, S. Harrap, E. Nesharim, and D. Simmons. Schmidt games and Cantor winning sets, arXiv preprint arXiv:1804.06499, pp. 1–36 (2018).

  7. V. Bernik, D. Kleinbock, and G. Margulis. Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions. International Mathematics Research Notices, (9)2001 (2001), 453–486

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Badziahin, A. Pollington, and S. Velani. On a problem in simultaneous diophantine approximation: Schmidt’s conjecture. Annals of Mathematics, (3)174 (2011), 1837–1883

    Article  MathSciNet  MATH  Google Scholar 

  9. J. S. Cassels. An introduction to Diophantine approximation. Cambridge University Press, (1957).

    MATH  Google Scholar 

  10. S.G. Dani. On orbits of unipotent flows on homogeneous spaces. Ergodic Theory and Dynamical Systems, (01)4 (1984), 25–34

    Article  MathSciNet  MATH  Google Scholar 

  11. S.G. Dani. Bounded orbits of flows on homogeneous spaces. Commentarii Mathematici Helvetici, (1)61 (1986), 636–660

    Article  MathSciNet  MATH  Google Scholar 

  12. S.G. Dani and G. Margulis. Limit distributions of orbits of unipotent flows and values of quadratic forms. IM Gelfand Seminar. Adv. Soviet Math, 16 (1992), 91–137

    MATH  Google Scholar 

  13. H. Davenport and W. Schmidt. Dirichlet’s theorem on Diophantine approximation. ii. Acta Arithmetica, (4)16 (1970), 413–424

    Article  MathSciNet  MATH  Google Scholar 

  14. M. L. Einsiedler and T. Ward. Functional Analysis, Spectral Theory, and Applications, volume 276. Springer (2017).

    Book  MATH  Google Scholar 

  15. V. Jarník. Zur metrischen Theorie der Diophantischen approximationen. Prace Matematyczno-Fizyczne, (1)36 (1928–1929), 91–106.

  16. D. Kleinbock. Flows on homogeneous spaces and diophantine properties of matrices. Duke Math. J., 95 (1998), 107–124

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Kleinbock. An extension of quantitative nondivergence and applications to diophantine exponents. Transactions of the American Mathematical Society, (12)360 (2008), 6497–6523

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Kleinbock and G. Margulis. Bounded orbits of nonquasiunipotent flows on homogeneous spaces. American Mathematical Society Translations, pp. 141–172, (1996).

  19. D. Kleinbock and G. Margulis. Flows on homogeneous spaces and Diophantine approximation on manifolds. Annals of Mathematics, pp. 339–360, (1998).

  20. D. Kleinbock and B. Weiss. Dirichlet’s theorem on Diophantine approximation and homogeneous flows. Journal of Modern Dynamics, (1)2 (2008), 43–62

    MathSciNet  MATH  Google Scholar 

  21. D. Kleinbock and B. Weiss. Modified Schmidt games and Diophantine approximation with weights. Advances in Mathematics, (4)223 (2010), 1276–1298

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Lindenstrauss and G. Margulis. Effective estimates on indefinite ternary forms. Israel Journal of Mathematics, (1)203 (2014), 445–499

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Mahler. Ein Übertragungsprinzip für lineare Ungleichungen. Časopis pro pěstování matematiky a fysiky, (3)68 (1939), 85–92

    MATH  Google Scholar 

  24. K. Mahler. On lattice points in n-dimensional star bodies. i. existence theorems. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 187. The Royal Society, (1946), pp. 151–187.

  25. S. Mozes and N. Shah. On the space of ergodic invariant measures of unipotent flows. Ergodic Theory and Dynamical Systems, (01)15 (1995), 149–159

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Margulis and G. Tomanov. Invariant measures for actions of unipotent groups over local fields on homogeneous spaces. Inventiones mathematicae, (1)116 (1994), 347–392

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Nesharim and D. Simmons. Bad(s,t) is hyperplane absolute winning. Acta Arithmetica, (2)164 (2014), 145–152

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Pollington and S. Velani. On simultaneously badly approximable numbers. Journal of the London Mathematical Society, (1)66 (2002), 29–40

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Ratner. On Raghunathan’s measure conjecture. Annals of Mathematics, pp. 545–607, 1991.

  30. W. M. Schmidt. On badly approximable numbers and certain games. Transactions of the American Mathematical Society, (1)123 (1966), 178–199

    Article  MathSciNet  MATH  Google Scholar 

  31. W. M. Schmidt. Open problems in Diophantine approximation. Diophantine approximations and transcendental numbers (Luminy, 1982), 31 (1983), 271–287

    MathSciNet  Google Scholar 

  32. N. Shah. Equidistribution of expanding translates of curves and Dirichlet’s theorem on diophantine approximation. Inventiones Mathematicae, (3)177 (2009), 509–532

    Article  MathSciNet  MATH  Google Scholar 

  33. N. Shah. Limiting distributions of curves under geodesic flow on hyperbolic manifolds. Duke Mathematical Journal, (2)148 (2009), 251–279

Download references

Acknowledgements

The author would like to thank Elon Lindenstrauss and Barak Weiss for sharing many insightful ideas on this problem. He also thanks Shahar Mozes for helpful conversations on this problem. He appreciates their encouragements during the process of this work. He thanks Victor Beresnevich for inspiring discussion on this topic, especially for pointing out that the proof works for \(C^n\) differentiable submanifolds. He also thanks Jinpeng An, Anish Ghosh, Erez Nesharim and Sanju Velani for their interests and helpful comments on an earlier version of this paper. Thanks are due to the anonymous referees for carefully reading the paper and giving many valuable suggestions that led to this revised version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported in part by ISF Grant 2095/15, ERC Grant AdG 267259, NSFC Grant 11743006 and the Fundamental Research Funds for the Central Universities YJ201769.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L. Badly approximable points on manifolds and unipotent orbits in homogeneous spaces. Geom. Funct. Anal. 29, 1194–1234 (2019). https://doi.org/10.1007/s00039-019-00508-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-019-00508-1

Keywords and phrases

Mathematics Subject Classification

Navigation