Skip to main content
Log in

Dimension Estimates for Non-conformal Repellers and Continuity of Sub-additive Topological Pressure

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Given a non-conformal repeller \(\Lambda \) of a \(C^{1+\gamma }\) map, we study the Hausdorff dimension of the repeller and continuity of the sub-additive topological pressure for the sub-additive singular valued potentials. Such a potential always possesses an equilibrium state. We then use a substantially modified version of Katok’s approximating argument, to construct a compact invariant set on which the corresponding dynamical quantities (such as Lyapunov exponents and metric entropy) are close to that of the equilibrium measure. This allows us to establish continuity of the sub-additive topological pressure and obtain a sharp lower bound of the Hausdorff dimension of the repeller. The latter is given by the zero of the super-additive topological pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Avila, S. Crovisier, and A. Wilkinson. \(C^1\) density of stable ergodicity. Preprint, (2017) http://www.math.uchicago.edu/~wilkinso/papers/acw2 -14Sept2017.pdf

  2. J. Ban, Y. Cao, and H. Hu. The dimension of a non-conformal repeller and an average conformal repeller. Trans. Amer. Math. Soc., (2)362 (2010), 727–751

    MathSciNet  MATH  Google Scholar 

  3. L. Barreira. A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergod. Th. & Dynam. Sys., 16 (1996), 871–928

    MathSciNet  MATH  Google Scholar 

  4. L. Barreira. Nonadditive thermodynamic formalism: equilibrium and Gibbs measures. Disc. Contin. Dyn. Syst., 16 (2006), 279–305

    MathSciNet  MATH  Google Scholar 

  5. L. Barreira. Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics. 272, Birkhäuser Verlag, Basel (2008).

    MATH  Google Scholar 

  6. L. Barreira. Thermodynamic Formalism and Applications to Dimension Theory, Progress in Mathematics. 294, Birkhäuser, Springer Basel (2011).

    MATH  Google Scholar 

  7. L. Barreira and K. Gelfert. Dimension estimates in smooth dynamics: A survey of recent results. Ergod. Th. & Dynam. Sys., 31 (2011), 641–671

    MathSciNet  MATH  Google Scholar 

  8. L. Barreira and Y. Pesin. Introduction to smooth ergodic theory. GSM, 148, AMS, Providence, Rhode Island (2013).

  9. L. Barreira and Y. Pesin. Nonuniform hyperbolicity: Dynamics of systems with nonzero Lyapunov exponents. Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge University Press, Cambridge (2007)

  10. R. Bowen. Hausdorff dimension of quasicircles. Institut des Hautes Études Scientifiques, 50 (1979), 11–25

    MathSciNet  MATH  Google Scholar 

  11. Y. Cao, D. Feng, and W. Huang, The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst., 20 (2008) 639–657

    MathSciNet  MATH  Google Scholar 

  12. J. Chen and Y. Pesin. Dimension of non-conformal repellers: A survey. Nonlinearity, 23 (2010), R93–R114

    MathSciNet  MATH  Google Scholar 

  13. Y. Chung, Shadowing properties of non-invertible maps with hyperbolic measures. Tokyo J. Math., 22 (1999), 145–166

    MathSciNet  MATH  Google Scholar 

  14. T. Das and D. Simmons. The Hausdorff and dynamical dimensions of self-affine sponges: a dimension gap result. arXiv:1604.08166v3 [math.DS]

  15. K. Falconer. Fractal geometry: mathematical foundations and applications. Wiley, New York (2003).

    MATH  Google Scholar 

  16. K. Falconer. A subadditive thermodynamic formalism for mixing repellers. Journal of Physics A, 21 (1988), L737–L742

    MathSciNet  MATH  Google Scholar 

  17. K. Falconer. Bounded distortion and dimension for non-conformal repellers. Math. Proc. Camb. Phil. Soc., 115 (1994), 315–334

    MATH  Google Scholar 

  18. D. Feng and W. Huang. Lyapunov spectrum of asymptotically sub-additive potentials. Commun. Math. Phys., 297 (2010), 1-43

    MathSciNet  MATH  Google Scholar 

  19. D. Feng and W. Huang. Variational principle for weighted topological pressure. J. Math. Pures Appl., 106 (2016), 411–452

    MathSciNet  MATH  Google Scholar 

  20. D. Feng and P. Shmerkin. Non-conformal repellers and the continuity of pressure for matrix cocycles. Geom. Funct. Anal., 24 (2014), 1101–1128

    MathSciNet  MATH  Google Scholar 

  21. G. Froyland, S. Lloyd, and A. Quas. Coherent structures and isolated spectrum for Perron-Frobenius cocycles. Ergod. Th. & Dynam. Sys., 30 (2010), 729–756

    MathSciNet  MATH  Google Scholar 

  22. K. Gelfert. Repellers for non-uniformly expanding maps with singular or critical points. Bull. Braz. Math. Soc., 41 (2010), 237–257

    MathSciNet  MATH  Google Scholar 

  23. K. Gelfert, Horseshoes for diffeomorphisms preserving hyperbolic measures. Math. Z., 283 (2016), 685–701

    MathSciNet  MATH  Google Scholar 

  24. M. Jiang and R. de la Llave. Smooth dependence of thermodynamic limits of SRBmeasures. Comm. Math. Phys., 211 (2000), 303–333

    MathSciNet  MATH  Google Scholar 

  25. A. Katok. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math., 51, (1980) 137–173

    MathSciNet  MATH  Google Scholar 

  26. A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications. vol. 54, Cambridge University Press, Cambridge (1995).

    MATH  Google Scholar 

  27. A. Katok, G. Knieper, M. Pollicott and H. Weiss. Differentiability and analyticity of topological entropy for Anosov and geodesic flows. Invent. Math., 98 (1989), 581–597

    MathSciNet  MATH  Google Scholar 

  28. S. Luzzatto and F. J. Sanchez-Salas. Uniform hyperbolic approximation of measures with non-zeroLyapunov exponents. Proc. Am. Math. Soc., 141 (2013), 3157–3169

    MATH  Google Scholar 

  29. R. Mañé. The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces. Bol. Soc. Brasil. Mat. (N.S.), 20 (1990), 1–24

    MathSciNet  MATH  Google Scholar 

  30. L. Mendoza. The entropy of \(C^2\) surface diffeomorphisms in terms of Hausdorff dimension and a Lyapunov exponent. Ergod. Th. & Dynam. Sys., 5 (1985), 273–283

    MathSciNet  MATH  Google Scholar 

  31. L. Mendoza. Ergodic attractors for diffeormorphisms of surfaces. J. Lond. Math. Soc., 37 (1988), 362–374

    MATH  Google Scholar 

  32. L. Mendoza. Topological entropy of homoclinic closures. Trans. Am. Math. Soc., 311 (1989), 255–266

    MathSciNet  MATH  Google Scholar 

  33. H. McCluskey and A. Manning. Hausdorff dimension for horseshoes. Ergod. Th. & Dynam. Sys. 3 (1983), 251–260

    MathSciNet  MATH  Google Scholar 

  34. M. Misiurewicz and W. Szlenk. Entropy of piecewise monotone mappings. Stud. Math., (1)67 (1980), 45–63

    MathSciNet  MATH  Google Scholar 

  35. I. Morris and P. Shmerkin. On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems. Trans. Amer. Math. Soc., 371 (2019), 1547-1582

    MathSciNet  MATH  Google Scholar 

  36. T. Persson and J. Schmeling. Dyadic diophantine approximation and Katok’s horseshoe approximation. Acta Arith., 132 (2008), 205–230

    MathSciNet  MATH  Google Scholar 

  37. Y. Pesin. Dimension theory in dynamical systems, Contemporary Views and Applications. University of Chicago Press, Chicago (1997).

    MATH  Google Scholar 

  38. M. Pollicott. Analyticity of dimensions for hyperbolic surface diffeomorphisms. Proc. Am. Math. Soc., 143 (2015), 3465–3474

    MathSciNet  MATH  Google Scholar 

  39. F. Przytycki and M. Urbański. Conformal Fractals-Ergodic Theory Methods. Cambridge University Press, Cambridge (2010).

    MATH  Google Scholar 

  40. D. Ruelle. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys., (2)1 (1982), 99–107

    MathSciNet  MATH  Google Scholar 

  41. F.J. Sánchez-Salas. Ergodic attractors as limits of hyperbolic horseshoes. Ergod. Th. & Dynam. Sys., 22 (2002), 571–589

    MathSciNet  MATH  Google Scholar 

  42. F.J. Sánchez-Salas. Dimension of Markov towers for non-uniformly expanding one-dimensional systems. Discrete Contin. Dyn. Syst., 9 (2003), 1447–1464

    MathSciNet  MATH  Google Scholar 

  43. B. Solomyak. Measure and dimension for some fractal families. Mathematical Proceedings of the Cambridge Philosophical Society, 124 (1998), 531–546

    MathSciNet  MATH  Google Scholar 

  44. A. Verjovsky and H. Wu. Hausdorff dimension of Julia sets of complex Hénon mappings. Ergod. Th. & Dynam. Sys., 16 (1996), 849–861

    MATH  Google Scholar 

  45. P. Walters. An introduction to ergodic theory. Springer-Verlag, New York (1982).

    MATH  Google Scholar 

  46. C. Wolf. Dimension of Julia sets of polynomial automorphisms of \(C^2\). Michigan Math. J., 47 (2000), 585–600

    MathSciNet  MATH  Google Scholar 

  47. Y. Yang, Horseshoes for \(C^{1+\alpha }\) mappings with hyperbolic measures. Disc. Contin. Dynam. Sys., 35 (2015), 5133–5152

    MATH  Google Scholar 

  48. L. S. Young. Dimension, entropy and Lyapunov exponents. Ergod. Th. & Dynam. Sys., 2 (1982), 109–129

    MathSciNet  MATH  Google Scholar 

  49. Y. Zhang. Dynamical upper bounds for Hausdorff dimension of invariant sets. Ergod. Th. & Dynam. Sys., 17(3) (1997) 739-756

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their careful reading and valuable comments which helped improve the paper substantially. The authors would like to thank Professor Dejun Feng and Wen Huang for their suggestions and comments. Ya. P. wants to thank Mittag-Leffler Institute and the Department of Mathematics of Weizmann Institute of Science where part of this work was done for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Pesin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Cao: The first author is partially supported by NSFC (11771317, 11790274), Y. Pesin: author is partially supported by NSF grant DMS-1400027, Y. Zhao: author is partially supported by NSFC (11871361, 11790274).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Pesin, Y. & Zhao, Y. Dimension Estimates for Non-conformal Repellers and Continuity of Sub-additive Topological Pressure. Geom. Funct. Anal. 29, 1325–1368 (2019). https://doi.org/10.1007/s00039-019-00510-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-019-00510-7

Keywords and phrases

Mathematics Subject Classification

Navigation