Skip to main content
Log in

Strong solutions for Richards’ equation with Cauchy conditions and constant pressure gradient

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this note, Richards’ equation for two layered soils is considered in a two-dimensional spatial domain. It is endowed by pressure gradient and pressure condition at the top of domain, and no condition is posed at the bottom of domain. An existence and uniqueness result of strong solutions is obtained for such a problem assuming constant pressure gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt HW, Luckhaus S (1983) Quasilinear elliptic-parabolic differential equations. Math Z 183:311–341. https://doi.org/10.1007/BF01176474

    Article  Google Scholar 

  2. Arbogast T, Wheeler M, Zhang N (1996) A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J Numer Anal 33(4):1669–1687. https://doi.org/10.1137/S0036142994266728

    Article  Google Scholar 

  3. Beirão da Veiga L, Manzini G, Putti M (2015) Post processing of solution and flux for the nodal mimetic finite difference method. Numer Methods Partial Differ Equ 31(1):336–363. https://doi.org/10.1002/num.21907

    Article  Google Scholar 

  4. Benes M, Krupicka L (2015) On doubly nonlinear elliptic-parabolic systems arising in coupled transport phenomena in unsaturated porous media. NoDEA Nonlinear Differ Equ Appl 22(1):121–141. https://doi.org/10.1007/s00030-014-0278-x

    Article  Google Scholar 

  5. Benes M, Krupicka L, Stefan R (2015) On coupled heat transport and water flow in partially frozen variably saturated porous media. Appl Math Model 39:6580–6598. https://doi.org/10.1016/j.apm.2015.02.011

    Article  Google Scholar 

  6. Berardi M, Difonzo F, Lopez L (2019) A mixed Mol-TMoL for the numerical solution of the 2D Richards’ equation in layered soils. Comput Math Appl (submitted)

  7. Berardi M, Difonzo F, Notarnicola F, Vurro M (2018) A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone. Appl Numer Math 135:264–275. https://doi.org/10.1016/j.apnum.2018.08.013

    Article  Google Scholar 

  8. Berardi M, Difonzo F, Vurro M, Lopez L (2018) The 1D Richards’ equation in two layered soils: a Filippov approach to treat discontinuities. Adv Water Resour 115:264–272. https://doi.org/10.1016/j.advwatres.2017.09.027

    Article  Google Scholar 

  9. Berardi M, Vurro M (2016) The numerical solution of Richards’ equation by means of method of lines and ensemble Kalman filter. Math Comput Simul 125:38–47. https://doi.org/10.1016/j.matcom.2015.08.019

    Article  Google Scholar 

  10. Berardi M, Andrisani A, Lopez L, Vurro M (2016) A new data assimilation technique based on ensemble Kalman filter and Brownian bridges: an application to Richards’ equation. Comput Phys Commun 208:43–53

    Article  Google Scholar 

  11. Boccardo G, Crevacore E, Sethi R, Icardi M (2018) A robust upscaling of the effective particle deposition rate in porous media. J Contam Hydrol 212:3–13

    Article  Google Scholar 

  12. Brandhorst N, Erdal D, Neuweiler I (2017) Soil moisture prediction with the ensemble Kalman filter: handling uncertainty of soil hydraulic parameters. Adv Water Resour 110:360–370

    Article  Google Scholar 

  13. Broadbridge P, Daly E, Goard J (2017) Exact solutions of the Richards equation with nonlinear plant-root extraction. Water Resour Res 53(11):9679–9691. https://doi.org/10.1002/2017WR021097

    Article  Google Scholar 

  14. Camporese M, Paniconi C, Putti M, Salandin P (2009) Comparison of data assimilation techniques for a coupled model of surface and subsurface flow. Vadose Zone J 8(4):837–845

    Article  Google Scholar 

  15. Celia MA, Bouloutas ET, Zarba RL (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 26(7):1483–1496

    Article  Google Scholar 

  16. Coclite G, Karlsen K, Mishra S, Risebro H (2012) A hyperbolic-elliptic model of two-phase flow in porous media-existence of entropy solutions. Int J Numer Anal Model 9(3):562–583. https://doi.org/10.1029/WR026i007p01483

    Article  Google Scholar 

  17. Choquet C (2007) Semi-classical solutions for a nonlinear coupled elliptic-parabolic problem. Bull Aust Math Soc 76:369–396. https://doi.org/10.1017/S0004972700039757

    Article  Google Scholar 

  18. Dell’Oca A, Riva M, Ackerer P, Guadagnini A (2019) Solute transport in random composite media with uncertain dispersivities. Adv Water Resour 128:48–58

    Article  Google Scholar 

  19. De Luca DL, Cepeda JM (2016) Procedure to obtain analytical solutions of one-dimensional Richards’ equation for infiltration in two-layered soils. J Hydrol Eng 21(7):04016018. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001356

    Article  Google Scholar 

  20. Evans LC (1998) Partial differential equations. American Mathematical Society, Providence, p 662

    Google Scholar 

  21. Farthing MW, Ogden FL (2017) Numerical solution of Richards’ equation: a review of advances and challenges. Soil Sci Soc Am J 81(8):04017025. https://doi.org/10.2136/sssaj2017.02.0058

    Article  Google Scholar 

  22. Huppert HE, Neufeld JA, Strandkvist C (2013) The competition between gravity and flow focusing in two-layered porous media. J Fluid Mech 720:5–14. https://doi.org/10.1017/jfm.2012.623

    Article  Google Scholar 

  23. Kruzkov SN, Sukoriansky S (2007) Boundary problems for systems of equations of two-phase porous flow type; statement of the problems, questions of solvability, justification of approximate methods. Math USSR-Sbornik 33:62. https://doi.org/10.1070/SM1977v033n01ABEH002414

    Article  Google Scholar 

  24. List F, Radu FA (2016) A study on iterative methods for solving Richards’ equation. Comput Geosci 20(2):341–353. https://doi.org/10.1007/s10596-016-9566-3

    Article  Google Scholar 

  25. Manoli G, Bonetti S, Scudiero E, Morari F, Putti M, Teatini P (2015) Modeling soil-plant dynamics: assessing simulation accuracy by comparison with spatially distributed crop yield measurements. Vadose Zone J. https://doi.org/10.2136/vzj2015.05.0069

    Article  Google Scholar 

  26. Masciopinto C, Passarella G (2018) Mass-transfer impact on solute mobility in porous media: a new mobile–immobile model. J Contam Hydrol 215:21–28

    Article  Google Scholar 

  27. Mazzia A, Bergamaschi L, Putti M (2000) A time-splitting technique for the advection–dispersion equation in groundwater. J Comput Phys 157(1):181–198. https://doi.org/10.1006/jcph.1999.6370

    Article  Google Scholar 

  28. Merz W, Rybka P (2010) Strong solutions to the Richards equation in the unsaturated zone. J Math Anal Appl 371(2):741–749. https://doi.org/10.1016/j.jmaa.2010.05.066

    Article  Google Scholar 

  29. Naghedifar SM, Ziaei AN, Naghedifar SA (2019) Optimization of quadrilateral infiltration trench using numerical modeling and Taguchi approach. J Hydrol Eng 24(3):04018069. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001761

    Article  Google Scholar 

  30. Otto F (1994) Stability investigation of planar solutions of the Buckley–Leverett equations. Preprint: Sonderforschungsbereich Nichtlineare Partielle Differentialgleichungen, Sonderforschungsbereich, vol 256

  31. Otto F (1996) L1-contraction and uniqueness for quasilinear elliptic–parabolic equations. J Differ Equ 131(1):20–38. https://doi.org/10.1006/jdeq.1996.0155

    Article  Google Scholar 

  32. Paniconi C, Putti M (1994) A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems. Water Resour Res 30(12):3357–3374. https://doi.org/10.1029/94WR02046

    Article  Google Scholar 

  33. Pop IS, Radu FA, Knabner P (2004) Mixed finite elements for the Richards’ equation: linearization procedure. J Comput Appl Math 168(1–2):365–373. https://doi.org/10.1016/j.cam.2003.04.008

    Article  Google Scholar 

  34. Portoghese I, Iacobellis V, Sivapalan M (2008) Analysis of soil and vegetation patterns in semi-arid mediterranean landscapes by way of a conceptual water balance model. Hydrol Earth Syst Sci 12(1–2):899–911. https://doi.org/10.5194/hess-12-899-2008

    Article  Google Scholar 

  35. Radu FA, Pop IS, Knabner P (2004) Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation. SIAM J Numer Anal 42(2004):1452–1478. https://doi.org/10.1137/S0036142902405229

    Article  Google Scholar 

  36. Schroll H, Tveito A (2000) Local existence and stability for hyperbolic–elliptic system modeling two-phase reservoir flow. Electron J Differ Equ 2000:1–28

    Google Scholar 

  37. Seus D, Mitra K, Pop IS, Radu FA, Rohde C (2018) A linear domain decomposition method for partially saturated flow in porous media. Comput Methods Appl Mech Eng 333:331–355. https://doi.org/10.1016/j.cma.2018.01.029

    Article  Google Scholar 

  38. Triebel H (1978) Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam, p 528

    Google Scholar 

  39. Vacca G (2017) An \({H}^1\)-conforming virtual element for Darcy and Brinkman equations. Math Models Methods Appl Sci 28:159–194. https://doi.org/10.1142/S0218202518500057

    Article  Google Scholar 

  40. Wilderotter O (2003) An adaptive numerical method for the Richards equation with root growth. Plant Soil 251(2):255–267. https://doi.org/10.1023/A:1023031924963

    Article  Google Scholar 

  41. Zha Y, Yang J, Shi L, Song X (2013) Simulating one-dimensional unsaturated flow in heterogeneous soils with water content-based Richards equation. Vadose Zone J. https://doi.org/10.2136/vzj2012.0109

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Dr. Hagop Tossounian from Center for Mathematical Modeling of University of Chile, for precious conversations during the preparation and the revision of this work. Useful comments by anonymous reviewers are also acknowledged. The first author acknowledges the partial support of SmartWater Project (Grant Number 5ABY6P0), funded by Regione Puglia through the Innonetwork call.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Berardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berardi, M., Difonzo, F.V. Strong solutions for Richards’ equation with Cauchy conditions and constant pressure gradient. Environ Fluid Mech 20, 165–174 (2020). https://doi.org/10.1007/s10652-019-09705-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-019-09705-w

Keywords

Navigation