Skip to main content
Log in

Investigation of the Effect of a Longitudinal Magnetic Field Component on the Dynamics of Protons inside a Plasmoid

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Kinetic effects of the dynamics of protons in plasmoids with a non-zero longitudinal (By) magnetic field component in a current sheet (CS) of a geomagnetic tail are considered. The results of modeling proton dynamics and a description of the mechanism of emergence of “north-south” density asymmetry are presented. The mechanism that is possibly responsible for maintaining the longitudinal magnetic field component is described. The obtained parameters are evaluated and the results are compared with observations of the Cluster mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 3.
Fig. 4.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Harris, E.G., On a plasma sheath separating regions of oppositely directed magnetic fields, Nuovo Cimento, 1962, no. 23, no. 1, pp. 115–121.

  2. Øieroset, M., Phan, T.D., Fujimoto, M., et al., In situ detection of collisionless reconnection in the Earth’s magnetotail, Nature, 2001, vol. 412, pp. 414–417.

    Article  ADS  Google Scholar 

  3. Nakamura, R., Baumjohann, W., Fujimoto, M., et al., Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field, J. Geophys. Res., 2008, vol. 113, A07S16.

    Google Scholar 

  4. Büchner, J. and Zelenyi, L.M., Regular and chaotic particle motion in sheared magnetic field reversals, Adv. Space Res., 1991, vol. 11, no. 9, pp. 177–182.

    Article  ADS  Google Scholar 

  5. Zhu, Z. and Parks, G., Particle orbits in model current sheets with a nonzero by component, J. Geophys. Res., 1993, vol. 98, pp. 7603–7608.

    Article  ADS  Google Scholar 

  6. Kaufmann, R.L., Lu, C., and Larson, D.J., Cross-tail current, field-aligned current, J. Geophys. Res., 1994, vol. 99, pp. 11 277–11 295.

    Article  ADS  Google Scholar 

  7. Ricci, P., Brackbill, J.U., Daughton, W., and Lapenta, G., Collisionless magnetic reconnection in the presence of a guide field, Phys. Plasmas, 2004, vol. 11, no. 8, pp. 4102–4114.

    Article  ADS  MathSciNet  Google Scholar 

  8. Pritchett, P.L. and Coroniti, F.V., Three-dimensional collisionless magnetic reconnection in the presence of a guide field, J. Geophys. Res., 2004, vol. 109, A01220.

    Article  ADS  Google Scholar 

  9. Pritchett, P.L. and Mozer, F.S., Asymmetric magnetic reconnection in the presence of a guide field, J. Geophys. Res., 2009, vol. 114, A11210.

    Article  ADS  Google Scholar 

  10. Frank, A., Bugrov, S., and Markov, V., Enhancement of the guide field during the current sheet formation in the three-dimensional magnetic configuration with an X line, Phys. Lett. A, 2009, vol. 373, pp. 1460–1464.

    Article  ADS  Google Scholar 

  11. Fairfield, D.H., On the average configuration of the geomagnetic tail, J. Geophys. Res., 1979, vol. 84, pp. 1950–1958.

    Article  ADS  Google Scholar 

  12. Lui, A.T.Y., Characteristics of the cross-tail current in the Earth’s magnetotail, in Magnetospheric Currents (Geophys. Monogr. Ser. vol. 28), Potemra, T.A., Ed., Washington, D.C.: Am. Geophys. Union, 1984, pp. 158–170.

  13. Sergeev, V.A., Penetration of the by component of the IMF into the magnetotail, Geomagn. Aeron., 1987, vol. 27, no. 8, pp. 612–615.

    ADS  Google Scholar 

  14. Kaymaz, Z., Siscoe, G.L., Luhmann, J.G., et al., Interplanetary magnetic field control of magnetotail magnetic field geometry: IMP 8 observations, J. Geophys. Res., 1994, vol. 99, no. A6, pp. 11 113–11 126.

    Article  ADS  Google Scholar 

  15. Nakamura, R., Baumjohann, W., Fujimoto, M., et al., Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field, J. Geophys. Res., 2008, vol. 113, A07S16.

    Google Scholar 

  16. Rong, Z.J., Wan, W.X., Shen, C., et al., Profile of strong magnetic field by component in magnetotail current sheets, J. Geophys. Res., 2012, vol. 117, A06216.

    ADS  Google Scholar 

  17. Petrukovich, A.A., Origins of plasma sheet, J. Geophys. Res., 2011, vol. 116, A07217.

    Article  ADS  Google Scholar 

  18. Grigorenko, E.E., Malova, Kh.V., Malykhin, A.Yu., and Zelenyi, L.M., A possible mechanism of the enhancement and maintenance of the shear magnetic field component in the current sheet of the Earth’s magnetotail, Plasma Phys. Rep., 2015, vol. 41, no. 1, pp. 88–101.

    Article  ADS  Google Scholar 

  19. Slavin, J.A., Baker, D.N., Fairfield, D.H., et al., CDAW 8 observations of plasmoid signatures in the geomagnetic tail, J. Geophys. Res., 1989, vol. 94, pp. 15 153–15 175.

    Article  ADS  Google Scholar 

  20. Zelenyi, L.M. and Veselovskii, I.S., Plazmennaya geliogeofizika (Plasma Heliogeophysics), Moscow: Fizmatlit, 2008.

  21. Grigorenko, E.E., Burinskaya, T.M., Shevelev, M., et al., Large-scale fluctuations of PSBL magnetic flux tubes induced by the field-aligned motion of highly accelerated ions, Ann. Geophys., 2010, vol. 28, no. 6, pp. 1273–1288.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Malykhin.

Additional information

Translated by Yu. Preobrazhensky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malykhin, A.Y., Grigorenko, E.E. & Malova, H.V. Investigation of the Effect of a Longitudinal Magnetic Field Component on the Dynamics of Protons inside a Plasmoid. Cosmic Res 57, 227–236 (2019). https://doi.org/10.1134/S0010952519040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952519040051

Navigation