Skip to main content
Log in

Adaptive method for indirect identification of the statistical properties of random fields in a Bayesian framework

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This work considers the challenging problem of identifying the statistical properties of random fields from indirect observations. To this end, a Bayesian approach is introduced, whose key step is the nonparametric approximation of the likelihood function from limited information. When the likelihood function is based on the evaluation of an expensive computer code, this work also proposes a method to select iteratively new design points to reduce the uncertainties on the results that are due to the approximation of the likelihood. Two applications are finally presented to illustrate the efficiency of the proposed procedure: a first one based on analytic data, and a second one dealing with the identification of the random elasticity field of an heterogeneous microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    MathSciNet  MATH  Google Scholar 

  • Arnst M, Ghanem R, Soize C (2010) Identification of bayesian posteriors for coefficients of chaos expansions. J Comput Phys 229(9):3134–3154

    MathSciNet  MATH  Google Scholar 

  • Atwell J, King B (2001) Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math Comput Modell 33(1–3):1–19

    MathSciNet  MATH  Google Scholar 

  • Auffray Y, Barbillon P, Marin JM (2012) Maximin design on non hypercube domains and kernel interpolation. Stat Comput 22(3):703–712

    MathSciNet  MATH  Google Scholar 

  • Bilionis I, Zabaras N (2015) Bayesian uncertainty propagation using gaussian processes. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of uncertainty quantification. Springer, New York

    MATH  Google Scholar 

  • Box G, Jenkins G (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

    MATH  Google Scholar 

  • Chen P, Schwab C (2015) Sparse-grid, reduced basis bayesian inversion. Comput Methods Appl Mech Eng 297:84–115

    MathSciNet  MATH  Google Scholar 

  • Clouteau D, Cottereau R, Lombaert G (2013) Dynamics of structures coupled with elastic media—a review of numerical models and methods. J Sound Vib 332:2415–2436

    Google Scholar 

  • Conrad PR, Marzouk YM, Pillai NS, Smith A (2016) Accelerating asymptotically exact MCMC for computationally intensive models via local approximations. J Am Stat Assoc 111:1591–1607

    MathSciNet  Google Scholar 

  • Conrad PR, Davis A, Marzouk YM, Pillai NS, Smith A (2018) Parallel local approximation MCMC for expensive models. SIAM/ASA J Uncertain Quantif 6(1):39–373

    MathSciNet  MATH  Google Scholar 

  • Damblin G, Barbillonz P, Keller M, Pasanisi A, Parent E (2013) Adaptive numerical designs for the calibration of computer codes. SIAM/ASA J Uncertain Quantif 6(1):151–179

    MathSciNet  MATH  Google Scholar 

  • Draguljić D, Santner TJ, Dean AM (2012) Noncollapsing space-filling designs for bounded nonrectangular regions. Technometrics 54(2):169–178

    MathSciNet  Google Scholar 

  • Emery J, Grigoriu M, Field RF Jr (2016) Bayesian methods for characterizing unknown parameters of material models. Appl Math Model 13–14:6395–6411

    MathSciNet  Google Scholar 

  • Fang K, Li R, Sudjianto A (2006) Design and modeling for computer experiments. Computer science and data analysis series. Chapman & Hall, London

    MATH  Google Scholar 

  • Fang K, Lin D (2003) Uniform experimental designs and their applications in industry. Handb Stat 22:131–178

    MathSciNet  Google Scholar 

  • Fielding M, Nott DJ, Liong SY (2011) Efficient MCMC schemes for computationally expensive posterior distributions. Technometrics 53(1):16–28

    MathSciNet  Google Scholar 

  • Ghanem R, Spanos PD (2003) Stochastic finite elements: a spectral approach, rev edn. Dover Publications, New York

    MATH  Google Scholar 

  • Guilleminot J, Soize C (2013) On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties. J Elast 111:109–130

    MathSciNet  MATH  Google Scholar 

  • Higdon D, Lee H, Holloman C (2003) Markov chain monte carlo based approaches for inference in computationally intensive inverse problems. Bayesian Stat 7:181–197

    MathSciNet  Google Scholar 

  • Higdon D, Gattiker J, Williams B, Rightley M (2008) Computer model calibration using high-dimensional output. J Am Stat Assoc 103(482):570–583

    MathSciNet  MATH  Google Scholar 

  • Joseph VR, Gul E, Ba S (2015) Maximum projection designs for computer experiments. Biometrika 102(2):371–380

    MathSciNet  MATH  Google Scholar 

  • Kennedy M, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc 63:425–464

    MathSciNet  MATH  Google Scholar 

  • Lai WM, Rubin D, Krempl E (2010) Introduction to continuum mechanics. Elsevier, Inc, Amsterdam

    MATH  Google Scholar 

  • Le Maître O, Knio O (2010) Spectral methods for uncertainty quantification. Springer, New York

    MATH  Google Scholar 

  • Lekivetz R, Jones B (2015) Fast flexible space-filling designs for nonrectangular regions. Qual Reliab Eng Int 31(5):829–837

    Google Scholar 

  • Li J, Marzouk YM (2014) Adaptive construction of surrogates for the bayesian solution of inverse problems. SIAM J Sci Comput 36:A1163–A1186

    MathSciNet  MATH  Google Scholar 

  • Mak S, Joseph VR (2018) Minimax and minimax projection designs using clustering. J Comput Graph Stat 27(1):166–178. https://doi.org/10.1080/10618600.2017.1302881

    Article  MathSciNet  Google Scholar 

  • Marin JM, Robert CP (2007) Bayesian core. Springer, New York

    MATH  Google Scholar 

  • Marzouk YM, Najm HN (2009) Dimensionality reduction and polynomial chaos acceleration of bayesian inference in inverse problems. J Comput Phys 228(6):1862–1902

    MathSciNet  MATH  Google Scholar 

  • Marzouk YM, Xiu D (2009) A stochastic collocation approach to bayesian inference in inverse problems. Commun Comput Phys 6:826–847

    MathSciNet  MATH  Google Scholar 

  • Matthies H, Zander E, Rosi B, Litvinenko A (2016) Parameter estimation via conditional expectation: a Bayesian inversion. Adv Model Simul Eng Sci 3(1):24

    Google Scholar 

  • McKay M, Beckman R, Conover W (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245

    MathSciNet  MATH  Google Scholar 

  • Nguyen MT, Desceliers C, Soize C, Allain J, Gharbi H (2015) Multiscale identification of random elasticity field at mesoscale of a heterogeneous microstructure using multiscale experimental observations. J Multiscale Comput Eng 13(4):281–295

    Google Scholar 

  • Nouy A (2010) Proper generalized decomposition and separated representations for the numerical solution of high dimensional stochastic problems. Arch Comput Methods Eng 17:403–434

    MathSciNet  MATH  Google Scholar 

  • Nouy A, Soize C (2014) Random fields representations for stochastic elliptic boundary value problems and statistical inverse problems. Eur J Appl Math 25:339–373

    MathSciNet  MATH  Google Scholar 

  • Perrin G (2019) Adaptive calibration of a computer code with time-series output. Reliab Eng Syst Saf. https://doi.org/10.1016/j.ress.2019.106728

    Google Scholar 

  • Perrin G, Cannamela C (2017) A repulsion-based method for the definition and the enrichment of opotimized space filling designs in constrained input spaces. J Soc Fr Stat 158(1):37–67

    MATH  Google Scholar 

  • Perrin G, Soize C, Duhamel D, Funfschilling C (2012) Identification of polynomial chaos representations in high dimension from a set of realizations. SIAM J Sci Comput 34(6):2917–2945

    MathSciNet  MATH  Google Scholar 

  • Perrin G, Soize C, Duhamel D, Funfschilling C (2013) Karhunen–loéve expansion revisited for vector-valued random fields: scaling, errors and optimal basis. J Comput Phys 242:607–622

    MathSciNet  MATH  Google Scholar 

  • Perrin G, Soize C, Duhamel D, Funfschilling C (2014) A posteriori error and optimal reduced basis for stochastic processes defined by a finite set of realizations. SIAM/ASA J Uncertain Quantif 2:745–762

    MathSciNet  MATH  Google Scholar 

  • Perrin G, Soize C, Marque-Pucheu S, Garnier J (2017) Nested polynomial trends for the improvement of gaussian process-based predictors. J Comput Phys 346:389–402

    MathSciNet  MATH  Google Scholar 

  • Perrin G, Soize C, Ouhbi N (2018) Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints. J Comput Stat Data Anal 119:139–154

    MathSciNet  MATH  Google Scholar 

  • Rasmussen CE (2003) Gaussian processes to speed up hybrid monte carlo for expensive bayesian integrals. Bayesian Stat 7:651–659

    MathSciNet  Google Scholar 

  • Rubinstein RT, Kroese D (2008) Simulation and the Monte Carlo method. Wiley, Hoboken

    MATH  Google Scholar 

  • Santner TJ, Williams B, Notz W (2003) The design and analysis of computer experiments. Springer, New York

    MATH  Google Scholar 

  • Scott DW, Sain SR (2004) Multidimensional density estimation. In: Handbook of statistics, vol 24, pp 229–261

    Google Scholar 

  • Sinsbeck M, Nowak W (2017) Sequential design of computer experiments for the solution of Bayesian inverse. SIAM/ASA J Uncertain Quantif 5:640–664

    MathSciNet  MATH  Google Scholar 

  • Soize C (2006) Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput Methods Appl Mech Eng 195:26–64

    MathSciNet  MATH  Google Scholar 

  • Soize C (2008) Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size. Probab Eng Mech 23:307–323

    Google Scholar 

  • Soize C (2010) Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data. Comput Methods Appl Mech Eng 199(33–36):2150–2164

    MathSciNet  MATH  Google Scholar 

  • Soize C (2011) A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension. Comput Methods Appl Mech Eng 200(45–46):3083–3099

    MathSciNet  MATH  Google Scholar 

  • Soize C, Ghanem R (2016) Data-driven probability concentration and sampling on manifold. J Comput Phys 321(September 2015):242–258

    MathSciNet  MATH  Google Scholar 

  • Soize C, Ghanem R (2017) Probabilistic learning on manifold for optimization under uncertainties. Proc Uncecomp 2017:1–15

    Google Scholar 

  • Stinstra E, den Hertog D, Stehouwer P, Vestjens A (2003) Constrained maximin designs for computer experiments. Technometrics 45(4):340–346

    MathSciNet  Google Scholar 

  • Stinstra E, den Hertog D, Stehouwer P, Vestjens A (2010) Uniform designs over general input domains with applications to target region estimation in computer experiments. Comput Stat Data Anal 51(1):219–232

    MathSciNet  Google Scholar 

  • Stuart AM (2010) Inverse problems: a bayesian perspective. Acta Numerica 19:451–559

    MathSciNet  MATH  Google Scholar 

  • Tian M, Li D, Cao Z, Phoon K, Wang Y (2016) Bayesian identification of random field model using indirect test data. Eng Geol 210:197–211

    Google Scholar 

  • Tsilifis P, Ghanem RG, Hajali P (2017) Efficient Bayesian experimentation using an expected information gain lower bound. SIAM/ASA J Uncertain Quantif 5:30–62

    MathSciNet  MATH  Google Scholar 

  • Wan J, Zabaras N (2011) A Bayesian approach to multiscale inverse problems using the sequential Monte Carlo method. Inverse Probl 27:105004

    MathSciNet  MATH  Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing. Encycl Stat Behav Sci 60(60):212

    MathSciNet  MATH  Google Scholar 

  • Whittle P (1951) Hypothesis testing in time series, Ph.D. thesis. University of Uppsala

  • Whittle P (1983) Prediction and regulation by linear least-square methods. University of Minnesota Press, Minneapolis

    MATH  Google Scholar 

  • Williams M (2011) The eigenfunctions of the Karhunen–Loeve integral equation for a spherical system. Propab Eng Mech 26:202–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Perrin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1. Proof of the equality of Eq. 9

Let \(\varvec{A},\varvec{B},\varvec{D}\) be the block decomposition matrices of \(\widehat{\varvec{C}}^{-1}\):

$$\begin{aligned} \widehat{\varvec{C}}^{-1}=\left[ \begin{array}{cc} \varvec{A} &{} \varvec{B} \\ \varvec{B}^T &{} \varvec{D} \end{array} \right] . \end{aligned}$$
(30)

Using the Schur complement, if follows that:

$$\begin{aligned} \left\{ {\begin{matrix} &{} \widehat{\varvec{C}}_{\varvec{ZZ}}^{-1}=\varvec{D}-\varvec{B}^T\varvec{A}^{-1}\varvec{B}, \\ &{} (\widehat{\varvec{C}}_{\varvec{YY}}-\widehat{\varvec{C}}_{\varvec{YZ}}\widehat{\varvec{C}}_{\varvec{ZZ}}^{-1}\widehat{\varvec{C}}_{\varvec{YZ}}^T)^{-1}=\varvec{A}, \\ &{} -\widehat{\varvec{C}}_{\varvec{YZ}}\widehat{\varvec{C}}_{\varvec{ZZ}}^{-1}=\varvec{A}^{-1}\varvec{B}. \end{matrix}} \right. \end{aligned}$$
(31)

It comes

$$\begin{aligned}&\left( (\varvec{y},\varvec{z})-(\varvec{Y}(\omega _m),\varvec{Z}(\omega _m)) \right) ^T (h^2\widehat{\varvec{C}})^{-1} \left( (\varvec{y},\varvec{z})-(\varvec{Y}(\omega _m),\varvec{Z}(\omega _m)) \right) \nonumber \\&\quad =\frac{1}{h^2}\left( {\begin{matrix} &{} (\varvec{y}-\varvec{Y}(\omega _m))^T\varvec{A}(\varvec{y}-\varvec{Y}(\omega _m))+2(\varvec{y}-\varvec{Y}(\omega _m))^T\varvec{A}\varvec{A}^{-1}\varvec{B}\left( \varvec{z}-\varvec{Z}(\omega _m) \right) \\ &{} +(\varvec{z}-\varvec{Z}(\omega _m))^T\varvec{D}(\varvec{z}-\varvec{Z}(\omega _m))\end{matrix}} \right) \nonumber \\&\quad = \frac{1}{h^2}\left( {\begin{matrix}(\varvec{y}-\varvec{Y}(\omega _m)&{} +\varvec{A}^{-1}\varvec{B}\left( \varvec{z}-\varvec{Z}(\omega _m) \right) )^T\varvec{A}(\varvec{y}-\varvec{Y}(\omega _m)+\varvec{A}^{-1}\varvec{B}\left( \varvec{z}-\varvec{Z}(\omega _m) \right) )\\ &{} +(\varvec{z}-\varvec{Z}(\omega _m))^T\left( \varvec{D}-\varvec{B}^T\varvec{A}^{-1}\varvec{B} \right) (\varvec{z}-\varvec{Z}(\omega _m)) \end{matrix}} \right) \nonumber \\&\quad = (\varvec{y}-\varvec{\mu }_n(\varvec{z}))^{T}\varvec{C}_n^{-1}(\varvec{y}-\varvec{\mu }_n(\varvec{z}))+\frac{1}{h^{2}}\left( \varvec{z}-\varvec{Z}(\omega _m) \right) ^T\varvec{C}_{\varvec{ZZ}}^{-1} \left( \varvec{z}-\varvec{Z}(\omega _m) \right) \end{aligned}$$
(32)

This leads to the searched result.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrin, G., Soize, C. Adaptive method for indirect identification of the statistical properties of random fields in a Bayesian framework. Comput Stat 35, 111–133 (2020). https://doi.org/10.1007/s00180-019-00936-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-019-00936-5

Keywords

Navigation