Skip to main content
Log in

Bohr Phenomenon for Locally Univalent Functions and Logarithmic Power Series

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

In this article we prove Bohr inequalities for sense-preserving K-quasiconformal harmonic mappings defined in the unit disk \({{\mathbb {D}}}\) and obtain the corresponding results for sense-preserving harmonic mappings. In addition, Bohr inequalities are established for uniformly locally univalent holomorphic functions, and for \(\log (f(z)/z)\) where f is univalent or inverse of a univalent function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu Muhanna, Y.: Bohr’s phenomenon in subordination and bounded harmonic classes. Complex Var. Elliptic Equ. 55(11), 1071–1078 (2010)

    Article  MathSciNet  Google Scholar 

  2. Abu Muhanna, Y., Ali, R.M.: Bohr’s phenomenon for analytic functions into the exterior of a compact convex body. J. Math. Anal. Appl. 379(2), 512–517 (2011)

    Article  MathSciNet  Google Scholar 

  3. Abu Muhanna, Y., Ali, R.M., Ng, Z.C., Hasni, S.F.M.: Bohr radius for subordinating families of analytic functions and bounded harmonic mappings. J. Math. Anal. Appl. 420(1), 124–136 (2014)

    Article  MathSciNet  Google Scholar 

  4. Aizenberg, L.: Multidimensional analogues of Bohr’s theorem on power series. Proc. Am. Math. Soc. 128(4), 1147–1155 (2000)

    Article  MathSciNet  Google Scholar 

  5. Andreev, V.V., Duren, P.L.: Inequalities for logarithmic coefficients of univalent functions and their derivatives. Indiana Univ. Math. J. 37(4), 721–733 (1988)

    Article  MathSciNet  Google Scholar 

  6. Ali, R.M., Barnard, R.W., Solynin, A.Yu.: A note on Bohr’s phenomenon for power series. J. Math. Anal. Appl. 449(1), 154–167 (2017)

    Article  MathSciNet  Google Scholar 

  7. Alkhaleefah, S.A., Kayumov, I.R., Ponnusamy, S.: On the Bohr inequality with a fixed zero coefficient. Proc. Am. Math. Soc. (To appear). arXiv:1903.12646v1 [math.CV]

  8. Bhowmik, B., Das, N.: Bohr phenomenon for subordinating families of certain univalent functions. J. Math. Anal. Appl. 462(2), 1087–1098 (2018)

    Article  MathSciNet  Google Scholar 

  9. Boas, H.P., Khavinson, D.: Bohr’s power series theorem in several variables. Proc. Am. Math. Soc. 125(10), 2975–2979 (1997)

    Article  MathSciNet  Google Scholar 

  10. Bohr, H.: A theorem concerning power series. Proc. Lond. Math. Soc. 13(2), 1–5 (1914)

    Article  MathSciNet  Google Scholar 

  11. Defant, A., García, D., Maestre, M., Pérez-García, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008)

    Article  MathSciNet  Google Scholar 

  12. Defant, A., Mastyło, M., Pérez, A.: Bohr’s phenomenon for functions on the Boolean cube. J. Funct. Anal. 275(11), 3115–3147 (2018)

    Article  MathSciNet  Google Scholar 

  13. Duren, P.L.: Univalent Functions, vol. 259. Springer, New York (1983)

    MATH  Google Scholar 

  14. Evdoridis, S., Ponnusamy, S., Rasila, A.: Improved Bohr’s inequality for locally univalent harmonic mappings. Indag. Math. 30, 201–213 (2019)

    Article  MathSciNet  Google Scholar 

  15. Hernández, R., Martín, M.J.: Stable geometric properties of analytic and harmonic functions. Math. Proc. Camb. Philos. Soc. 155(2), 343–359 (2013)

    Article  MathSciNet  Google Scholar 

  16. Kayumov, I.R., Ponnusamy, S., Shakirov, N.: Bohr radius for locally univalent harmonic mappings. Math. Nachr. 291(11–12), 1757–1768 (2018)

    Article  MathSciNet  Google Scholar 

  17. Kim, Y.C., Sugawa, T.: Growth and coefficient estimates for uniformly locally univalent functions on the unit disk. Rocky Mt. J. Math. 32(1), 179–200 (2002)

    Article  MathSciNet  Google Scholar 

  18. Liu, G., Ponnusamy, S.: On harmonic \(\nu \)-Bloch and \(\nu \)-Bloch-type mappings. Results Math. (2018). https://doi.org/10.1007/s00025-018-0853-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Z., Ponnusamy, S.: Bohr radius for subordination and \(K\)-quasiconformal harmonic mappings. Bull. Malays. Math. Sci. Soc. (To appear). arXiv:1905.10334v1 [math.CV]

  20. Obradović, M., Ponnusamy, S., Wirths, K.-J.: Geometric studies on the class \({\cal{U}}(\lambda )\). Bull. Malays. Math. Sci. Soc. 39(3), 1259–1284 (2016)

    Article  MathSciNet  Google Scholar 

  21. Obradović, M., Ponnusamy, S., Wirths, K.-J.: Logarithmic coefficients and a coefficient conjecture for univalent functions. Monatsh. Math. 185(3), 489–501 (2018)

    Article  MathSciNet  Google Scholar 

  22. Partyka, D., Sakan, K.-I., Zhu, J.-F.: Quasiconformal harmonic mappings with the convex holomorphic part. Ann. Acad. Sci. Fenn. Math. 43(1), 401–418 (2018)

    Article  MathSciNet  Google Scholar 

  23. Paulsen, V.I., Singh, D.: Extensions of Bohr’s inequality. Bull. Lond. Math. Soc. 38(6), 991–999 (2006)

    Article  MathSciNet  Google Scholar 

  24. Pommerenke, Ch.: Uniformly perfect sets and the Poincaré metric. Arch. Math. (Basel) 32(2), 192–199 (1979)

    Article  MathSciNet  Google Scholar 

  25. Ponnusamy, S., Sharma, N.L., Wirths, K.-J.: Logarithmic coefficients of the inverse of univalent functions. Results Math. (2018). https://doi.org/10.1007/s00025-018-0921-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Popescu, G.: Bohr inequalities for free holomorphic functions on polyballs. Adv. Math. 347, 1002–1053 (2019)

    Article  MathSciNet  Google Scholar 

  27. Roth, O.: A sharp inequality for the logarithmic coefficients of univalent functions. Proc. Am. Math. Soc. 135(7), 2051–2054 (2007)

    Article  MathSciNet  Google Scholar 

  28. Schaubroeck, L.E.: Subordination of planar harmonic functions. Complex Variables Theory Appl. 41(2), 163–178 (2000)

    Article  MathSciNet  Google Scholar 

  29. Sugawa, T.: Various domain constants related to uniform perfectness. Complex Variables Theory Appl. 36(4), 311–345 (1998)

    Article  MathSciNet  Google Scholar 

  30. Yamashita, S.: Almost locally univalent functions. Monatsh. Math. 81(3), 235–240 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to record their sincere thanks to the anonymous referee for his/her insightful comments, which greatly helped to improve the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bappaditya Bhowmik.

Additional information

Communicated by Pekka Koskela.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author of this article would like to thank SERB, DST, India (Ref. No.- MTR/2018/001176) for its financial support through MATRICS Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmik, B., Das, N. Bohr Phenomenon for Locally Univalent Functions and Logarithmic Power Series. Comput. Methods Funct. Theory 19, 729–745 (2019). https://doi.org/10.1007/s40315-019-00291-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-019-00291-y

Keywords

Mathematics Subject Classification

Navigation