Skip to main content
Log in

The Dual Elements of Function Sets and Fefferman–Stein Decomposition of Triebel–Lizorkin Functions via Wavelets

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let \(D\in \mathbb {N}\), \(q\in [2,\infty )\) and \((\mathbb {R}^D,|\cdot |,dx)\) be the Euclidean space equipped with the D-dimensional Lebesgue measure. In this article, we establish the Fefferman–Stein decomposition of Triebel–Lizorkin spaces \(\dot{F}^0_{\infty ,\,q'}(\mathbb {R}^D)\) with the help of the dual on function sets which have special topological structure. A function in Triebel–Lizorkin spaces \(\dot{F}^0_{\infty ,\,q'}(\mathbb {R}^D)\) can be written as a specific combination of \(D+1\) functions in \(\dot{F}^0_{\infty ,\,q'}(\mathbb {R}^D) \cap L^{\infty }(\mathbb {R}^D)\). To get such a decomposition, first, some auxiliary function spaces \(\mathrm {WE}^{1,\,q}({\mathbb {R}}^D)\) and \(\mathrm {WE}^{\infty ,\,q'}(\mathbb {R}^D)\) are defined via wavelet expansions. It is shown that

$$\begin{aligned} {\dot{F}^0_{1,\,q}({\mathbb {R}}^D)}\subsetneqq L^{1}({\mathbb {R}}^D) \cup {\dot{F}^0_{1,\,q}({\mathbb {R}}^D)}\subset \mathrm{WE}^{1,\,q}({\mathbb {R}}^D)\subset L^{1}({\mathbb {R}}^D) + {\dot{F}^0_{1,\,q}({\mathbb {R}}^D)}\end{aligned}$$

and \(\mathrm {WE}^{\infty ,\,q'}(\mathbb {R}^D)\) is strictly contained in \(\dot{F}^0_{\infty ,\,q'}(\mathbb {R}^D)\). Next, the Riesz transform characterization of Triebel–Lizorkin spaces \(\dot{F}^0_{1,\,q}(\mathbb {R}^D)\) by the function set \(\mathrm {WE}^{1,\,q}({\mathbb {R}}^D)\) is established. Then the dual of \(\mathrm {WE}^{1,\,q}({\mathbb {R}}^D)\) is considered. As a consequence of the above results, a Riesz transform characterization of Triebel–Lizorkin spaces \(\dot{F}^0_{1,\,q}(\mathbb {R}^D)\) by Banach space \(L^{1}({\mathbb {R}}^D) + {\dot{F}^0_{1,\,q}({\mathbb {R}}^D)}\) is obtained. Although Fefferman–Stein type decompositions when \(D=1\) was obtained by Lin et al. (Mich Math J 62:691–703, 2013), as was pointed out by Lin et al., the approach used in the case \(D=1\) cannot be applied to the cases \(D\ge 2\). In the latter cases, some new skills related to Riesz transforms are to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, J., Chang, D.-C., Yang, D., Yang, S.: Riesz transform characterizations of Musielak–Orlicz–Hardy spaces. Trans. Am. Math. Soc. (to appear). arXiv:1401.7373

  2. Christ, M., Geller, D.: Singular integral characterizations of Hardy spaces on homogeneous groups. Duke Math. J. 51, 547–598 (1984)

    Article  MathSciNet  Google Scholar 

  3. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  Google Scholar 

  4. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)

    Article  MathSciNet  Google Scholar 

  5. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics, vol. 79, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1991)

  6. Georgiadis, A.G., Johnsen, J., Nielsen, M.: Wavelet transforms for homogeneous mixed-norm Triebel–Lizorkin spaces. Monatsh. Math. 183(4), 587–624 (2017)

    Article  MathSciNet  Google Scholar 

  7. Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46, 27–42 (1979)

    Article  MathSciNet  Google Scholar 

  8. Grafakos, L.: Classical Fourier Analysis, 2nd edn, Graduate Texts in Mathematics, vol. 249. Springer, New York (2008)

    Google Scholar 

  9. Holschneider, M.: Wavelets, An Analytic Tools. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  10. Lin, C.-C., Liu, H.: \({\rm BMO}_L({\mathbb{H}}^n)\) spaces and Carleson measures for Schrödinger operators. Adv. Math. 228, 1631–1688 (2011)

    Article  MathSciNet  Google Scholar 

  11. Lin, C.-C., Lin, Y.-C., Yang, Q.: Hilbert transform characterization and Fefferman–Stein decomposition of Triebel–Lizorkin spaces. Mich. Math. J. 62, 691–703 (2013)

    Article  MathSciNet  Google Scholar 

  12. Meyer, Y.: Wavelets and Operators, Translated from the 1990 French original by D. H. Salinger, Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)

  13. Nakamura, S., Noi, T., Sawano, Y.: Generalized Morrey spaces and trace operator. Sci. China Math. 59, 281–336 (2016)

    Article  MathSciNet  Google Scholar 

  14. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  15. Qian, T., Yang, Q.: Wavelets and holomorphic functions. Complex Anal. Oper. Theory. https://doi.org/10.1007/s11785-016-0597-5

  16. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  17. Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  18. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  19. Triebel, H.: Spaces of distributions of Besov type on Euclidean \(n\)-space. Duality, interpolation. Ark. Mat. 11, 13–64 (1973)

    Article  MathSciNet  Google Scholar 

  20. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  21. Triebel, H.: Theory of Function Spaces. II. Birkhäuser, Basel (1992)

    Book  Google Scholar 

  22. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  23. Uchiyama, A.: A constructive proof of the Fefferman–Stein decomposition of \({\rm BMO} ({\mathbb{R}}^n)\). Acta Math. 148, 215–241 (1982)

    Article  MathSciNet  Google Scholar 

  24. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets, London Mathematical Society Student Texts 37. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  25. Yang, D., Zhuo, C., Nakai, E.: Characterizations of variable exponent Hardy spaces via Riesz transforms. Rev. Mat. Complut. (2016). https://doi.org/10.1007/s13163-016-0188-z

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, Q., Qian, T., Li, P.: Fefferman–Stein decomposition for \(Q\)-spaces and micro-local quantities. Nonlinear Anal. 145, 24–48 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dachun Yang and Xing Fu who contributed some useful suggestions to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixiang Yang.

Additional information

Communicated by Doron Lubinsky.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project is supported by the National Natural Science Foundation of China (Grant no. 11571261), Macao Government FDCT099 and The Science and Technology Development Fund, Macau SAR (File no. 0123/2018/A3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Qian, T. The Dual Elements of Function Sets and Fefferman–Stein Decomposition of Triebel–Lizorkin Functions via Wavelets. Comput. Methods Funct. Theory 20, 185–216 (2020). https://doi.org/10.1007/s40315-020-00309-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-020-00309-w

Keywords

Mathematics Subject Classification

Navigation