Skip to main content
Log in

Geometric Formalities Along the Chern-Ricci Flow

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we study how the notions of geometric formality according to Kotschick and other geometric formalities adapted to the Hermitian setting evolve under the action of the Chern-Ricci flow on class VII surfaces, including Hopf and Inoue surfaces, and on Kodaira surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aeppli, A.: On the cohomology structure of Stein manifolds. In: Proceedings of Conference Complex Analysis (Minneapolis, Minn., 1964), pp. 58–70. Springer, Berlin (1965)

    Google Scholar 

  2. Angella, D.: The cohomologies of the Iwasawa manifold and of its small deformations. J. Geom. Anal. 23(3), 1355–1378 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Angella, D.: On the Bott–Chern and Aeppli cohomology, arXiv:1507.07112. In: Bielefeld Geometry & Topology Days, https://www.math.uni-bielefeld.de/sfb701/suppls/ssfb15001.pdf, 2015

  4. Angella, D., Dloussky, G., Tomassini, A.: On Bott–Chern cohomology of compact complex surfaces. Ann. Mat. Pura Appl. 195(1), 199–217 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Angella, D., Kasuya, H.: Bott-Chern cohomology of solvmanifolds. Ann. Global Anal. Geom. 52(4), 363–411 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Angella, D., Tardini, N.: Quantitative and qualitative cohomological properties for non-Kähler manifolds. Proc. Amer. Math. Soc. 145(1), 273–285 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Angella, D., Tomassini, A.: On the \(\partial \overline{\partial }\)-Lemma and Bott–Chern cohomology. Invent. Math. 192(1), 71–81 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Angella, D., Tomassini, A.: On Bott–Chern cohomology and formality. J. Geom. Phys. 93, 52–61 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, 2nd edn. Springer, Berlin (2004)

    Google Scholar 

  10. Bogomolov, F.A.: Classification of surfaces of class \(VII_0\) with \(b_2=0\). Izv. Akad. Nauk SSSR Ser. Mat. 40(2), 273–288, 469 (1976)

    MathSciNet  Google Scholar 

  11. Bogomolov, F.A.: Surfaces of class \(VII_{0}\) and affine geometry. Izv. Akad. Nauk SSSR Ser. Mat. 46(4), 710–761, 896 (1982)

    MathSciNet  Google Scholar 

  12. Bombieri, E.: Letter to Kodaira (1973)

  13. Bott, R., Chern, S.S.: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math. 114(1), 71–112 (1965)

    MathSciNet  MATH  Google Scholar 

  14. Buchdahl, N.: On compact Kähler surfaces. Ann. Inst. Fourier (Grenoble) 49(1), vii, xi, 287–302 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Buijs, U., Moreno-Fernández, J.M., Murillo, A.: \(A_{\infty }\) structures and Massey products. Mediterr. J. Math. 17(1), Paper No. 31 (2020)

  16. Calabi, E., Eckmann, B.: A class of compact, complex manifolds which are not algebraic. Ann. Math. 58(3), 494–500 (1953)

    MathSciNet  MATH  Google Scholar 

  17. Cattaneo, A., Tomassini, A.: Dolbeault-Massey triple products of low degree. J. Geom. Phys. 98, 300–311 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Console, S., Fino, A.: Dolbeault cohomology of compact nilmanifolds. Transform. Groups 6(2), 111–124 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Deligne, P., Griffiths, PhA, Morgan, J., Sullivan, D.P.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)

    MathSciNet  MATH  Google Scholar 

  20. Félix, Y., Oprea, J., Tanré, D.: Algebraic Models in Geometry, Oxford Graduate Texts in Mathematics, 17. Oxford University Press, Oxford (2008)

    Google Scholar 

  21. Fino, A., Parton, M., Salamon, S.: Families of strong KT structures in six dimensions. Comment. Math. Helv. 79(2), 317–340 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Gill, M.: Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Commun. Anal. Geom. 19(2), 277–304 (2011)

    MATH  Google Scholar 

  23. Hasegawa, K.: Minimal models of nilmanifolds. Proc. Amer. Math. Soc. 106(1), 65–71 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Hasegawa, K.: Complex and Kähler structures on compact solvmanifolds, Conference on Symplectic Topology. J. Symplectic Geom. 3(4), 749–767 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Hattori, A.: Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I 8(1960), 289–331 (1960)

    MathSciNet  MATH  Google Scholar 

  26. Hirzebruch, F.: Topological methods in algebraic geometry, Translated from the German and Appendix One by R. L. E. Schwarzenberger, With a preface to the third English edition by the author and Schwarzenberger, Appendix Two by A. Borel, Reprint of the 1978 edition, Classics in Mathematics, Springer, Berlin, (1995)

  27. Inoue, M.: On surfaces of Class \(VII_{0}\). Invent. Math. 24, 269–310 (1974)

    MathSciNet  Google Scholar 

  28. Kadeishvili, T.V.: On the homology theory of fibre spaces. Russian Math. Surv. 35(3), 231–238 (1980)

    MATH  Google Scholar 

  29. Kodaira, K.: On the structure of compact complex analytic surfaces. I. Amer. J. Math. 86, 751–798 (1964)

    MathSciNet  MATH  Google Scholar 

  30. Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures. III. Stability theorems for complex structures. Ann. Math. 71(1), 43–76 (1960)

    MathSciNet  MATH  Google Scholar 

  31. Kotschick, D.: On products of harmonic forms. Duke Math. J. 107(3), 521–531 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Kotschick, D., Terzić, S.: Geometric formality of homogeneous spaces and of biquotients. Pac. J. Math. 249(1), 157–176 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Lamari, A.: Courants kählériens et surfaces compactes. Ann. Inst. Fourier (Grenoble) 49(1), vii, x, 263–285 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Lattés, S.: Sur les formes réduites des transformations ponctuelles à deux variables. Application à une classe remarquable de Taylor. C. Rend. 152, 1566–1569 (1911)

    MATH  Google Scholar 

  35. Lauret, J.: Geometric flows and their solitons on homogeneous spaces. Rend. Semin. Mat. Univ. Politec. Torino 74(1), 55–93 (2016)

    MathSciNet  Google Scholar 

  36. Li, J., Yau, S.-T., Zheng, F.: A simple proof of Bogomolov’s theorem on class \(VII_0\) surfaces with \(b_2=0\). Illinois J. Math. 34(2), 217–220 (1990)

    MathSciNet  Google Scholar 

  37. Li, J., Yau, S.-T., Zheng, F.: On projectively flat Hermitian manifolds. Commun. Anal. Geom. 2(1), 103–109 (1994)

    MathSciNet  MATH  Google Scholar 

  38. Liu, K.-F., Yang, X.-K.: Geometry of Hermitian manifolds. Int. J. Math. 23(6), 1250055-40 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Lu, D.-M., Palmieri, J.H., Wu, Q.-S., Zhang, J.J.: \(A\)-infinity structure on Ext-algebras. J. Pure Appl. Algebra 213(11), 2017–2037 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Merkulov, S.A.: Strong homotopy algebras of a Kähler manifold. Int. Math. Res. Notices 1999(3), 153–164 (1999)

    MathSciNet  MATH  Google Scholar 

  41. Nakamura, I.: Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10(1), 85–112 (1975)

    MathSciNet  MATH  Google Scholar 

  42. Neisendorfer, J., Taylor, L.: Dolbeault homotopy theory. Trans. Amer. Math. Soc. 245, 183–210 (1978)

    MathSciNet  MATH  Google Scholar 

  43. Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math. 59(3), 531–538 (1954)

    MathSciNet  MATH  Google Scholar 

  44. Oeljeklaus, K., Toma, M.: Non-Kähler compact complex manifolds associated to number fields. Ann. Inst. Fourier (Grenoble) 55(1), 161–171 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Otal, A., Ugarte, L., Villacampa, R.: Invariant solutions to the Strominger system and the heterotic equations of motion. Nuclear Phys. B 920, 442–474 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Ovando, G.: Complex, symplectic and Kähler structures on four dimensional Lie groups. Rev. Un. Mat. Argentina 45(2), 55–67 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Parton, M.: Explicit parallelizations on products of spheres and Calabi-Eckmann structures. Rend. Istit. Mat. Univ. Trieste 35(1–2), 61–67 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Picard, S.: Calabi-Yau Manifolds with Torsion and Geometric Flows, to appear in Complex non-Kähler Geometry, Lecture Notes in Mathematics, CIME Subseries, Springer (2019)

  49. SageMath, the Sage Mathematics Software System (Version 7.3), The Sage Developers, 2016, http://www.sagemath.org

  50. Schweitzer, M.: Autour de la cohomologie de Bott-Chern, Prépublication de l’Institut Fourier 703, arXiv:0709.3528

  51. Stasheff, J.D.: Homotopy associativity of \(H\)-spaces. I, II, Trans. Amer. Math. Soc. 108(2), 275–292, 293–312 (1963)

    MathSciNet  MATH  Google Scholar 

  52. Stelzig, J.: On the Structure of Double Complexes, arXiv:1812.00865

  53. Sternberg, S.: Local contractions and a theorem of Poincaré. Amer. J. Math. 79, 809–824 (1957)

    MathSciNet  MATH  Google Scholar 

  54. Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. (JEMS) 13(3), 601–634 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47(1977), 269–331 (1978)

    MathSciNet  MATH  Google Scholar 

  56. Tardini, N., Tomassini, A.: On geometric Bott-Chern formality and deformations. Ann. Mat. Pura Appl. (4) 196(1), 349–362 (2017)

    MathSciNet  MATH  Google Scholar 

  57. Teleman, A.: Projectively flat surfaces and Bogomolov’s theorem on class \(VII_{0}\)-surfaces. Int. J. Math. 5, 253–264 (1994)

    MATH  Google Scholar 

  58. Teleman, A.: The pseudo-effective cone of a non-Kählerian surface and applications. Math. Ann. 335(4), 965–989 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Tomassini, A., Torelli, S.: On Dolbeault formality and small deformations. Int. J. Math. 25(11), 9 (2014). Article ID 1450111

    MathSciNet  MATH  Google Scholar 

  60. Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern-Ricci form. J. Differ. Geom. 99(1), 125–163 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Ustinovskiy, Y.: Hermitian curvature flow on complex homogeneous manifolds, arXiv:1706.07023

  62. Wehler, J.: Versal deformation of Hopf surfaces. J. Reine Angew. Math. 1981(328), 22–32 (1981)

    MathSciNet  MATH  Google Scholar 

  63. Zhou, J.: Hodge theory and \(\rm A_{\infty }\)-structures on cohomology. Int. Math. Res. Notices 2000(2), 71–78 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been originally developed as partial fulfillment for the second author’s Master Degree in Matematica at Università di Firenze under the supervision of the first author. The authors would like to thank Andrea Cattaneo, José Manuel Moreno-Fernández, Cosimo Flavi, Nicoletta Tardini, and Adriano Tomassini for several interesting discussions. Thanks also to the anonymous Referee for her/his comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Angella.

Additional information

Communicated by Filippo Bracci.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by the Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica”, by SIR2014 project RBSI14DYEB “Analytic aspects in complex and hypercomplex geometry”, and by GNSAGA of INdAM.

This article is part of the topical collection “Higher Dimensional Geometric Function Theory and Hypercomplex Analysis” edited by Irene Sabadini, Michael Shapiro and Daniele Struppa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angella, D., Sferruzza, T. Geometric Formalities Along the Chern-Ricci Flow. Complex Anal. Oper. Theory 14, 27 (2020). https://doi.org/10.1007/s11785-019-00971-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-019-00971-6

Keywords

Mathematics Subject Classification

Navigation