Skip to main content
Log in

Nonlinear Coherent States Associated with a Measure on the Positive Real Half Line

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We construct a class of generalized nonlinear coherent states by means of a newly obtained class of 2D complex orthogonal polynomials. The associated Bargmann-type transform is discussed. A polynomials realization of the basis of the quantum states Hilbert space is also obtained. Here, the entire structure owes its existence to a certain measure on the positive real half line, of finite total mass, together with all its moments. We illustrate this method with the measure \(r^\beta e^{-r}dr\), where \(\beta \) is a non-negative constant, which leads to a new generalization of the true-polyanalytic Bargmann transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abreu, L.D.: Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions. Appl. Comp. Harm. Anal. 29, 287–302 (2010)

    Article  MathSciNet  Google Scholar 

  2. Abreu, L.D., Feichtinger, H.G.: Function Spaces of Polyanalytic Functions, Harmonic and Complex Analysis and Its Applications, pp. 1–38. Birkhäuser (2014)

  3. Abreu, L.D., Gröchenig, K.: Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group. Appl. Anal. 91(11), 1981–1997 (2012)

    Article  MathSciNet  Google Scholar 

  4. Abreu, L.D., Gröchenig, K., José, L.: Harmonic analysis in phase space and finite Weyl-Heisenberg ensembles. J. Stat. Phys. 174(5), 1104–1136 (2019)

    Article  MathSciNet  Google Scholar 

  5. Akhiezer, N.I.: The Classical Moment Problem and Some Related Questions in Analysis. Hafner, New York (1965)

    MATH  Google Scholar 

  6. Ali, S.T., Antoine, J.P., Gazeau, J.P.: Coherent States, Wavelets, and Their Generalizations. Springer, New York (1999, 2014)

  7. Ali, S.T., Bagarello, F., Gazeau, J.P.: Quantizations from reproducing kernel spaces. Ann. Phys. 332, 127–142 (2012)

    Article  MathSciNet  Google Scholar 

  8. Ali, S.T., Ismail, M.E.H.: Some orthogonal polynomials arising from coherent states. J. Phys. A Math. Theor. 45 (2012)

  9. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  10. Askey, R., Wimp, J.: Associated Laguerre and Hermite polynomials. Proc. R. Soc. Edinburgh A 96, 1537 (1984)

    Article  MathSciNet  Google Scholar 

  11. Askour, N., Intissar, A., Mouayn, Z.: Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants. C. R. Acad. Sci. Paris Sér. I Math. 325, 707–712 (1997)

    Article  MathSciNet  Google Scholar 

  12. Askour, N., Intissar, A., Mouayn, Z.: Explicit formulas for reproducing kernels of generalized Bargmann spaces of \({\mathbb{C}}^n\). J. Math. Phys. 41(5), 3057–3067 (2000)

    Article  MathSciNet  Google Scholar 

  13. Askour, N., Mouayn, Z.: Spectral decomposition and resolvent kernel for a magnetic Laplacian in \({\mathbb{C}}^n\). J. Math. Phys. 41(10), 6937–6943 (2000)

    Article  MathSciNet  Google Scholar 

  14. Boussejra, A., Intissar, A.: Réalisation de l’espace de Hardy \(H^2(B^n)\) par des fonctions harmoniques d’un laplacien de Patterson dans la boule de Bergman \(B^n\). C. R. Acad. Sci. Paris Sér. I Math. 318(4), 309–313 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Burbea, J.: Inequalities for reproducing kernel spaces. Illinois J. Math. 27(1), 130–137 (1983)

    Article  MathSciNet  Google Scholar 

  16. Carlitz, L.: A note on the Laguerre polynomials. Michigan Math. J. 7, 219–223 (1960)

    Article  MathSciNet  Google Scholar 

  17. Charris, J.A., Gomez, L.A.: Functional analysis, orthogonal polynomials and a theorem of Markov. Rev. Colombiana Mat. 22, 77–128 (1988)

    MathSciNet  MATH  Google Scholar 

  18. de Matos Filho, R.L., Vogel, W.: Nonlinear coherent states. Phys. Rev. A 54, 4560 (1996)

    Article  Google Scholar 

  19. Dombrowski, J.: Orthogonal polynomials and functional analysis. In: Nevai, P. (ed.) Orthogonal Polynomials: Theory and Practice, NATO-ASI Series C, vol. 294, pp. 147–161. Kluwer Academic Publishers, Dordrecht (1990)

    Chapter  Google Scholar 

  20. Gazeau, J.P.: Coherent States in Quantum Physics. Wiley-VCH, Berlin (2009)

    Book  Google Scholar 

  21. Greubel, G.C.: On some generating functions for the extended generalized Hermite polynomials. Appl. Math. Comput. 173, 547–553 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Ismail, M.E.H., Letessier, J., Valent, G.: Linear birth and death models and associated Laguerre and Meixner polynomials. J. Approx. Theory. 55, 337–348 (1988)

    Article  MathSciNet  Google Scholar 

  23. Ismail, M.E.H., Zhang, R.: Classes of bivariate orthogonal polynomials. SIGMA 12, 021 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Itô, K.: Complex multiple Wiener integral. Jpn. J. Math. 22, 63–86 (1953)

    Article  MathSciNet  Google Scholar 

  25. Koekoek, R., Swarttouw, R.: The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its \(q\)-Analogues. Delft University of Technology, Delft (1998)

    Google Scholar 

  26. Koelink, E.: Spectral theory and special functions. Laredo Lectures on Orthogonal Polynomials and Special Functions, 45–84, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY (2004)

  27. Man’ko, V.I., Tino, G.M.: Experimental limit on the blue shift of the frequency implied by a \(q\)-nonlinearity. Phys. Lett. A 202, 24 (1995)

    Article  MathSciNet  Google Scholar 

  28. Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: \(f\)-oscillators and non-linear coherent states. Phys. Scr. 55, 528 (1997)

    Article  Google Scholar 

  29. Mouayn, Z.: Coherent state transforms attached to generalized Bargmann spaces on the complex plane. Math. Nachr. 284(14–15), 1948–1954 (2011)

    Article  MathSciNet  Google Scholar 

  30. Mittag-Leffler, M.G.: Sur la nouvelle fonction \(E_a(x)\). C. R. Acad. Sci. Paris 137, 554 (1903)

    MATH  Google Scholar 

  31. Naderi, M.H., Soltanolkotabi, M., Roknizadeh, R.: New photon-added and photon-depleted coherent states associated with inverse \(q\)-boson operators: nonclassical properties. J. Phys. A Math. Gen. 37, 3225 (2004)

    Article  MathSciNet  Google Scholar 

  32. Roknizadeh, R., Tavassoly, M.K.: The construction of some important classes of generalized coherent states: the nonlinear coherent states method. J. Phys. A Math. Gen. 37, 8111 (2004)

    Article  MathSciNet  Google Scholar 

  33. Roknizadeh, R., Tavassoly, M.K.: Representations of coherent and squeezed states in a \(f\)-deformed Fock space. J. Phys. A Math. Gen. 37, 5649 (2004)

    Article  MathSciNet  Google Scholar 

  34. Shanta, P., Chaturvdi, S., Srinivasan, V., Jagannathan, R.: Unified approach to the analogues of single-photon and multiphoton coherent states for generalized bosonic oscillators. J. Phys. A Math. Gen. 27, 6433 (1994)

    Article  MathSciNet  Google Scholar 

  35. Sivakumar, S.: Photon-added coherent states as nonlinear coherent states. J. Phys. A Math. Gen. 32, 3441 (1999)

    Article  MathSciNet  Google Scholar 

  36. Sivakumar, S.: Studies on nonlinear coherent states. J. Opt. B Quantum Semiclass. Opt. 2, R61 (2000)

    Article  MathSciNet  Google Scholar 

  37. Sixdeniers, J.M., Penson, K.A., Solomon, A.I.: Mittag–Leffler coherent states. J. Phys. A Math. Gen. 32, 7543 (1999)

    Article  MathSciNet  Google Scholar 

  38. Srivastava, H.M., Daoust, M.C.: A note on the convergence of Kampé de Fériet’s double hypergeometric series. Math Nachr. 53, 151–159 (1972)

    Article  MathSciNet  Google Scholar 

  39. Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series. Ellis Horwood Ltd., Chister (1985)

    MATH  Google Scholar 

  40. Srivastava, H.M., Manocha, L.: A Treatise on Generating Functions. Ellis Horwood Ltd., London (1984)

    MATH  Google Scholar 

  41. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  42. Vogel, W., Welsh, D.G.: Quantum Optic. WILEY-VCH Verlag & \(\text{C}_0\). KGaA, Wheihein (2006)

  43. Wiman, A.: Überden Fundamentalsatz in der Teorie der Functionen \(E_{a}(x)\). Acta Math. 29, 191 (1905)

    Article  MathSciNet  Google Scholar 

  44. Wünsche, A.: Generalized Hermite polynomials associated with functions of parabolic cylinder. Appl. Math. Comput. 141, 197–213 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper was completed while Z. Mouayn was staying at the Acoustics Research Institute, supported by the Grant FWF P. 31225-N32, “Operators and time-frequency analysis”. Z. Mouayn and K. Ahbli would like to thank the anonymous referees for their valuable comments and suggestions that improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouhaïr Mouayn.

Additional information

Communicated by Ivan Veselic.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. T. Ali: This paper is a development of project that Z. Mouayn during his visit to Concordia University on September 2014 has started with Professor S. Twareque Ali. Later, on January 2016, Professor S. Twareque Ali passed away. This work is dedicated to his memory.

This article is part of the topical collection “Infinite-dimensional Analysis and Non-commutative Theory (Marek Bozejko, Palle Jorgensen and Yuri Kondratiev”.

Appendices

Appendix A. Proof of Proposition 3.2.1

Assuming the finiteness of the sum

$$\begin{aligned} {\mathcal {N}}_{\beta ,m}(z{\overline{z}} )=\sum _{n=0}^{\infty } \frac{\vert P_{n,m}(z,{\overline{z}};\beta )\vert ^2}{x_{n}^{\beta ,m}!} <+\infty , \end{aligned}$$
(A.1)

means that

$$\begin{aligned} \sum _{n=0}^{m-1 } \frac{\vert P_{n,m}(z,{\overline{z}};\beta )\vert ^2}{x_{n}^{\beta ,m}!}+\sum _{n=m}^{\infty } \frac{\vert P_{n,m}(z,{\overline{z}};\beta )\vert ^2}{x_{n}^{\beta ,m}!} <+\infty \end{aligned}$$
(A.2)

this implies the finiteness of the infinite sum in (A.2) which may be written (up to a multiplicative constant) as

$$\begin{aligned}&\sum _{n=m}^{\infty } \frac{|\phi _{m}(z{\overline{z}};n-m+\beta )|^2}{\zeta _{n\wedge m}\left( \left| n-m\right| +\beta \right) }(z{\overline{z}})^{n-m}\\&\quad = \sum _{n=m}^{\infty } \left( \sum _{i,j=0}^{m}\frac{c_i(m;n-m+\beta )c_j(m;n-m+\beta )}{\zeta _{n\wedge m}\left( \left| n-m\right| +\beta \right) }(z{\overline{z}})^{2m-i-j} \right) (z{\overline{z}})^{n-m}\\&\quad = \sum _{n=0}^{\infty } \left( \sum _{i,j=0}^{m}\frac{c_i(m;n+\beta )c_j(m;n+\beta )}{\zeta _{m}( n +\beta )}(z{\overline{z}})^{2m-i-j} \right) (z{\overline{z}})^{n}\\&\quad = \sum _{i,j=0}^{m} (z{\overline{z}})^{2m-i-j} \left( \sum _{n=0}^{\infty } \frac{c_i(m;n+\beta )c_j(m;n+\beta )}{\zeta _{m}( n +\beta )} (z{\overline{z}})^{n}\right) . \end{aligned}$$

The radius of convergence of the series

$$\begin{aligned} \sum _{n=0}^{\infty } \frac{c_i(m;n+\beta )c_j(m;n+\beta )}{\zeta _{m}( n +\beta )} (z{\overline{z}})^{n} \end{aligned}$$
(A.3)

can be found by applying the ratio test and it is given by (3.13). \(\square \)

Appendix B. Proof of Proposition 4.1.1

We start by writing the sum

$$\begin{aligned} S = \sum \limits _{j=0}^{+\infty }\frac{\Gamma (\beta +1) \left( j\wedge m\right) !}{\Gamma \left( \beta +j\vee m+1\right) } H_{j,m}^{\left( \beta \right) }\left( z,{\overline{z}}\right) \overline{H_{j,m}^{\left( \beta \right) }\left( w,{\overline{w}}\right) } \end{aligned}$$

as

$$\begin{aligned} S= & {} \sum \limits _{j=0}^{m-1 }\frac{ j !}{ \left( \beta + 1\right) _m }H_{j,m}^{\left( \beta \right) }\left( z,{\overline{z}}\right) \overline{H_{j,m}^{\left( \beta \right) }\left( w,{\overline{w}}\right) } \\&+\sum \limits _{j=m}^{+\infty }\frac{ m !}{\left( \beta +1\right) _j }H_{j,m}^{\left( \beta \right) }\left( z,{\overline{z}}\right) \overline{H_{j,m}^{\left( \beta \right) }\left( w,{\overline{w}}\right) }\\= & {} \sum \limits _{j=0}^{m-1 }\frac{ j !({\overline{z}}w)^{m-j}}{ \left( \beta + 1\right) _m } L_{j}^{\left( \beta +m-j\right) }\left( z{\overline{z}}\right) L_{j}^{\left( \beta +m-j\right) }\left( w{\overline{w}}\right) \\&+\sum \limits _{j=m}^{+\infty }\frac{m !}{ \left( \beta +1\right) _j}H_{j,m}^{\left( \beta \right) }\left( z,{\overline{z}}\right) \overline{H_{j,m}^{\left( \beta \right) }\left( w,{\overline{w}}\right) }. \end{aligned}$$

We denote the infinite sum in the last equation by

$$\begin{aligned} S_{(\infty )}=\sum \limits _{j=m}^{+\infty }\frac{m !}{ \left( \beta +1\right) _j }H_{j,m}^{\left( \beta \right) }\left( z,{\overline{z}}\right) \overline{H_{j,m}^{\left( \beta \right) }\left( w,{\overline{w}}\right) }. \end{aligned}$$
(B.1)

By replacing \(H_{j,m}^{\left( \beta \right) }\left( z,{\overline{z}}\right) \) by their expressions in (4.1) and making some manipulations, we obtain

$$\begin{aligned} S_{(\infty )}= & {} \frac{1}{m!}\sum \limits _{k=0}^{m}\sum \limits _{l=0}^{m} \left( \begin{array}{c} m \\ k \end{array} \right) \left( \begin{array}{c} m \\ l \end{array} \right) (-1)^{k+l} \nonumber \\&\times \sum \limits _{j=0}^{+\infty }(\beta +1)_{j+m}\frac{z^{j+k}{\overline{z}}^{k}{\overline{w}}^{j+l}w^{l}}{(\beta +1)_{j+k}(\beta +1)_{j+l}}. \end{aligned}$$
(B.2)

Using the identities

$$\begin{aligned} (a)_{k+m}=(a+m)_k(a)_m \quad \text {and} \quad (-m)_k=(-1)^k\frac{m!}{(m-k)!}=(-1)^kk!\left( \begin{array}{c} m \\ k \end{array} \right) , \end{aligned}$$

we arrive at the result

$$\begin{aligned} S_{(\infty )}= \frac{(\beta +1)_m}{m!}\sum \limits _{k=0}^{m}\sum \limits _{l=0}^{m}\frac{(-m)_k(-m)_l(z{\overline{z}})^k(w{\overline{w}})^{l}}{k!l!(\beta +1)_k(\beta +1)_{l}}{}_{2}F_{2}\left( \begin{array}{c} 1,m+\beta +1 \\ k+\beta +1,l+\beta +1 \end{array} \big |z{\overline{w}}\right) .\\ \end{aligned}$$

\(\square \)

Appendix C. Generalized Lauricella Series

The generalized Lauricella series in several variables is defined by [39, p. 36]:

$$\begin{aligned}&F_{C:D^{(1)};\cdots ;D^{(n)}}^{A:B^{(1)};\cdots ;B^{(n)}}\left[ \begin{array}{c} {[}(a):\theta ^{(1)},\ldots ,\theta ^{(n)}]:[(b^{(1)}):\phi ^{(1)}];\cdots [(b^{(n)}):\phi ^{(n)}] \\ {[}(c):\psi ^{(1)},\ldots ,\psi ^{(n)}]:[(b^{(1)}):\delta ^{(1)}];\cdots {[}(b^{(n)}):\delta ^{(n)}] \end{array} z_1,\ldots ,z_n \right] \end{aligned}$$
(C.1)
$$\begin{aligned}&\quad :=\sum \limits _{m_1,\ldots ,m_n=0}^{+\infty }\frac{\prod \nolimits _{j=1}^{A}(a_j)_{m_1\theta _j^{(1)}+\cdots +m_n\theta _j^{(n)}}\prod \nolimits _{j=1}^{B^{(1)}}(b_j^{(1)})_{m_1\phi _1^{(1)}}\cdots \prod \nolimits _{j=1}^{B^{(n)}}(b_j^{(n)})_{m_n\phi _j^{(n)}}}{\prod \nolimits _{j=1}^{C}(c_j)_{m_1\psi _j^{(1)}+\cdots +m_n\psi _j^{(n)}}\prod \nolimits _{j=1}^{D^{(1)}}(d_j^{(1)})_{m_1\delta _1^{(1)}}\cdots \prod \nolimits _{j=1}^{D^{(n)}}(d_j^{(n)})_{m_n\delta _j^{(n)}}},\frac{z_1^{m_1}}{m_1!}...\frac{z_n^{m_n}}{m_n!}\nonumber \\ \end{aligned}$$
(C.2)

where the coefficients

$$\begin{aligned} \left\{ \begin{array}{c} \theta _j^{(k)},\; j=1,\ldots ,A,\quad \phi _j^{(k)},\; j=1,\ldots ,B^{(k)},\\ \psi _j^{(k)},\; j=1,\ldots ,C, \quad \delta _j^{(k)},\; j=1,\ldots ,D^{(k)}, \end{array} k=1,\ldots ,n \right. \end{aligned}$$
(C.3)

are real and positive, and (a) abbreviates the array of A parameters \(a_1,\ldots ,a_A\); \((b^{(k)})\) abbreviates the array of \((B^{(k)})\) parameters \(b_j^{(k)}, j=1,\ldots ,B^{(k)}, k=1,\ldots ,n\). Similar interpretation holds for the remaining parameters. For precise conditions under which the generalized Lauricella function converges, see [38, pp. 153–157].

Appendix D. Computation of the Integral Kernel \(B_{\beta ,m}(x,z)\)

The \(\mu _\beta \)-NLCS in (4.7) evaluating in \(x\in {\mathbb {R}}\) are given by

$$\begin{aligned} \vartheta _{z}^{\beta ,m}(x) = \left( {\mathcal {N}}_{\beta ,m} (z{\overline{z}})\;\right) ^{-\frac{1}{2}}\;B_{\beta ,m}(x,z), \quad \ z\in {\mathbb {C}} \end{aligned}$$
(D.1)

where

$$\begin{aligned} B_{\beta ,m}(x,z)= \sum _{j=0}^{+\infty } \sqrt{\frac{\Gamma (\beta +1) \left( j\wedge m\right) !}{\Gamma \left( \beta +j\vee m+1\right) }} \frac{2^{j/2}}{\sqrt{(\beta +1)_j}}\overline{H_{j,m}^{\left( \beta \right) }\left( z,{\overline{z}}\right) }H_j(x,\beta ). \end{aligned}$$
(D.2)

We now express \(H_{j,m}^{\left( \beta \right) }\left( z,{\overline{z}}\right) \) in terms of Laguerre polynomials as in (4.2) and we split the sum \(\sum _{j=0}^{+\infty }\) in two parts \(S_{m-1}=\sum _{j=0}^{m-1}\) and \(S_{(\infty )}=\sum _{j=m}^{+\infty }\) as

$$\begin{aligned} B_{\beta ,m}(x,z)= & {} \sum _{j=0}^{m-1} (-1)^{j}\sqrt{\frac{j !}{\left( \beta +1\right) _m }} \frac{2^{j/2}z^{m-j}}{\sqrt{(\beta +1)_j}}L^{(m-j+\beta )}_{j}(z{\overline{z}} )H_j(x,\beta )\\&+\,(-1)^{m}\sqrt{m!}\sum _{j=m}^{+\infty } \frac{2^{j/2}\bar{z}^{j-m}}{(\beta +1)_j}L^{(j-m+\beta )}_{m}(z{\overline{z}} )H_j(x,\beta )=S_{m-1}+S_{(\infty )}. \end{aligned}$$

We write the infinite sum

$$\begin{aligned} S_{(\infty )}= & {} (-1)^m\sqrt{m!}\sum _{j=0}^{+\infty } \frac{2^{j/2}\bar{z}^{j-m}}{(\beta +1)_j}L^{(j-m+\beta )}_{m}(z{\overline{z}} )H_j(x,\beta )\\&-\, (-1)^m\sqrt{m!}\sum _{j=0}^{m-1} \frac{2^{j/2}\bar{z}^{j-m}}{(\beta +1)_j}L^{(j-m+\beta )}_{m}(z{\overline{z}} )H_j(x,\beta )=S_{(\infty )}^*-S_{m-1}^*. \end{aligned}$$

Next, we write the Laguerre polynomial ([25, p. 242]) as

$$\begin{aligned} L^{(j-m+\beta )}_{m}(z{\overline{z}} )=\frac{1}{m!}\sum _{k=0}^{m}\left( \begin{array}{c} m \\ k \end{array} \right) \frac{(\beta +1-k)_{k}(\beta +1)_{j}}{(\beta +1-k)_{j}}\left( -z\bar{z}\right) ^{m-k} \end{aligned}$$
(D.3)

to present the infinite sum as

$$\begin{aligned} S_{(\infty )}^* =\frac{z^m}{\sqrt{m!}}\sum _{k=0}^{m}\left( \begin{array}{c} m \\ k \end{array} \right) \frac{(-1)^k(\beta +1-k)_{k}}{\left( z\bar{z}\right) ^{k}}\sum _{j=0}^{+\infty } \frac{ (\bar{z}/\sqrt{2})^{j}}{(\beta +1-k)_{j}}H_j(x,\beta ) \end{aligned}$$
(D.4)

To obtain a closed form for \(S_{(\infty )}^*\) we make use of the following lemma.

Lemma D.1

A generating function for the associated Hermite polynomials is given by

$$\begin{aligned} \sum _{n=0}^\infty \frac{t^n}{(c)_n}H_n(x,\beta )=F_{1:0;0;0}^{1:0;0;1}\left( \begin{array}{c} [1:1,2,1]:-;-;[\beta :1] \\ \left[ c:1,2,2\right] :-;-;- \end{array} 2xt, -t^2, -2t^2\right) \nonumber \\ \end{aligned}$$
(D.5)

in terms of the generalized Lauricella function. In particular, for \(c=1\) and \(\beta =0\), we recover

$$\begin{aligned} \sum _{n=0}^\infty \frac{t^n}{n!}H_n(x)=e^{2xt-t^2}, \end{aligned}$$
(D.6)

the generating function of Hermite polynomials.

We apply (D.5) for parameters \(t=\frac{{\overline{z}}}{\sqrt{2}}\) and \(c=\beta -k+1\) to get

$$\begin{aligned}&\sum _{n=0}^\infty \frac{\left( \frac{{\overline{z}}}{\sqrt{2}}\right) ^n}{(\beta -k+1)_n}H_n(x,\beta )\nonumber \\&\quad =F_{1:0;0;0}^{1:0;0;1}\left( \begin{array}{c} {[}1:1,2,1]:-;-;[\beta :1] \\ \left[ \beta -k+1:1,2,2\right] :-;-;- \end{array} \sqrt{2}x{\overline{z}}, -\frac{{\overline{z}}^2}{2}, -{\overline{z}}^2\right) . \end{aligned}$$
(D.7)

Summarizing the above calculations by writing \(B_{\beta ,m}(z,x)=S_{m-1}-S_{m-1}^*+S_{\infty }^{*}\), we obtain the announced expression (4.16). This ends the proof of Eq. (4.16). \(\square \)

Proof of Lemma D.1

We first recall the associated Hermite polynomials

$$\begin{aligned} H_n(x,\beta )=\sum \limits _{k=0}^{\lfloor n/2\rfloor }\frac{(-1)^k n!}{k! (n-2k)!}\left( \sum \limits _{j=0}^{k}\frac{(-k)_j (\beta )_j}{(-n)_j}\frac{2^j}{j!}\right) (2x)^{n-2k} \end{aligned}$$
(D.8)

which also are connected to the polynomials \(He_{n}^{\beta }(x)\) in [44, p. 203] through the relation \(H_n(x,\beta )=2^{\frac{1}{2}n}He_{n}^{\beta }(\sqrt{2}x)\). Similar manipulations as in [21, pp. 548–549], yield

$$\begin{aligned} \sum _{n=0}^\infty \frac{t^n}{(c)_n}H_n(x,\beta )= & {} \sum _{n=0}^\infty \sum \limits _{k=0}^{\lfloor n/2\rfloor }\left( \sum \limits _{j=0}^{k}\frac{(-k)_j (\beta )_j}{(-n)_j}\frac{2^j}{j!}\right) \frac{(-1)^k n!}{k! (n-2k)!}(2x)^{n-2k}\frac{t^n}{(c)_n}\nonumber \\= & {} \sum _{n,k=0}^\infty \sum \limits _{j=0}^{k}\frac{(-k)_j (\beta )_j}{(-n-2k)_j}\frac{2^j}{j!}\frac{(-1)^k (n+2k)!}{k! n!}(2x)^{n}\frac{t^{n+2k}}{(c)_{n+2k}}\nonumber \\= & {} \sum _{n,k,j=0}^\infty \frac{(n+2k+2j)!(-k-j)_j(1)_k(\beta )_j}{(k+j)!(-n-2k-2j)_j(c)_{n+2k+2j}}\frac{(2xt)^n}{n!}\nonumber \\&\times \frac{(-t^2)^k}{k!}\frac{(-2t^2)^j}{j!}. \end{aligned}$$
(D.9)

These calculations can be done by applying successively the identities

$$\begin{aligned} \sum _{n=0}^\infty \sum \limits _{k=0}^{\lfloor n/2\rfloor }A(k,n)=\sum _{n=0}^\infty \sum \limits _{k=0}^{\infty }A(k,n+2k), \end{aligned}$$
(D.10)

and

$$\begin{aligned} \sum _{k=0}^\infty \sum \limits _{j=0}^{k}A(j,k)=\sum _{k=0}^\infty \sum \limits _{j=0}^{\infty }A(j,k+j), \end{aligned}$$
(D.11)

see [40, pp. 100–101]. Now, by observing that

$$\begin{aligned} \frac{(n+2k+2j)!(-k-j)_j(1)_k}{(k+j)!(-n-2k-2j)_j}=(1)_{n+2k+j} \end{aligned}$$
(D.12)

Equation (D.9) takes the form

$$\begin{aligned} \sum _{n=0}^\infty \frac{t^n}{(c)_n}H_n(x,\beta )=\sum _{n,k,j=0}^\infty \frac{(1)_{n+2k+j}(\beta )_j}{(c)_{n+2k+2j}}\frac{(2xt)^n}{n!}\frac{(-t^2)^k}{k!}\frac{(-2t^2)^j}{j!}. \end{aligned}$$
(D.13)

By recognizing the generalized Lauricella function ([39, p. 36])

$$\begin{aligned} F_{1:0;0;0}^{1:0;0;1}\left( \begin{array}{c} [1:1,2,1]:-;-;[\beta :1] \\ \left[ c:1,2,2\right] :-;-;- \end{array} 2xt, -t^2, -2t^2\right) \end{aligned}$$
(D.14)

in the R.H.S of (D.13), we complete the proof of Eq. (D.5). \(\square \)

Appendix E. Proof of Proposition 4.2.1

We set \(d\eta _{\beta }(z)=h(z\bar{z})d\nu (z),\) where again h is a density function to be found and \(d\nu (z)\) is the Lebesgue measure on \({\mathbb {C}}\). In terms of polar coordinates \(z=\rho e^{i\theta } ,\ \rho >0\) and \(\theta \in [0,2\pi )\), this measure reads \(d\eta _{\beta }(z)=\pi ^{-1}h(\rho ^{2})\rho d\rho d\theta \). Using the expression (4.27) of coherent states, the operator \({\mathcal {O}}_{\beta }=\int _{{\mathbb {C}}}T_{z}^{\beta } \ {\mathcal {N}}_{\beta }(z\bar{z}) d\eta _{\beta }(z)\) reads successively,

$$\begin{aligned} {\mathcal {O}}_{\beta }= & {} \sum \limits _{n,j=0}^{+\infty } \left( \int _0^{+\infty } \frac{\rho ^{n+j}h(\rho ^2)\rho d\rho }{\sqrt{x_n^\beta !}\sqrt{x_j^\beta !}}\left( \int _0^{\pi } e^{i(n-j)\theta }\frac{d\theta }{2\pi } \right) \right) T_{j,n} \end{aligned}$$
(E.1)
$$\begin{aligned}= & {} \sum \limits _{n=0}^{+\infty }\left( \frac{2}{(\beta +1)_n} \int _0^{+\infty }\rho ^{2n}h(\rho ^2) \rho d\rho \right) T_{n} \end{aligned}$$
(E.2)
$$\begin{aligned}= & {} \sum \limits _{n=0}^{+\infty }\left( \frac{1}{(\beta +1)_n} \int _0^{+\infty }r^{n}h(r)dr \right) T_{n}, \end{aligned}$$
(E.3)

where \(T_{j,n}\) is defined in (2.13). Now, the function h should satisfy

$$\begin{aligned} \int _0^{+\infty }r^{n}h(r)dr=\frac{\Gamma (n+\beta +1)}{\Gamma (\beta +1)}. \end{aligned}$$
(E.4)

From the Euler gamma function

$$\begin{aligned} \int _0^{+\infty }t^{s}e^{-t}dt=\Gamma (s+1), \quad Re(s)>-1, \end{aligned}$$
(E.5)

we see that the choice of \(h(r)=(\Gamma (\beta +1))^{-1} r^{\beta }e^{-r}\) provides the solution of (E.4) that makes \({\mathcal {O}}_{\beta }=\mathbf{1 }_{{\mathcal {H}}}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.T., Mouayn, Z. & Ahbli, K. Nonlinear Coherent States Associated with a Measure on the Positive Real Half Line. Complex Anal. Oper. Theory 14, 24 (2020). https://doi.org/10.1007/s11785-019-00976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-019-00976-1

Keywords

Mathematics Subject Classification

Navigation