Skip to main content
Log in

Littlewood-Paley Characterizations of Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces

In Memory of Professor Carlos Berenstein

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Let X be a ball quasi-Banach function space on \({{\mathbb {R}}}^n\). In this article, assuming that the powered Hardy–Littlewood maximal operator satisfies some Fefferman–Stein vector-valued maximal inequality on X and is bounded on the associated space, the authors establish various Littlewood–Paley function characterizations of the Hardy space \(H_X({{\mathbb {R}}}^n)\) associated with X, under some weak assumptions on the Littlewood–Paley functions. To this end, the authors also establish a useful estimate on the change of angles in tent spaces associated with X. All these results have wide applications. Particularly, when \(X:=M_r^p({{\mathbb {R}}}^n)\) (the Morrey space), \(X:=L^{\vec {p}}({{\mathbb {R}}}^n)\) (the mixed-norm Lebesgue space), \(X:=L^{p(\cdot )}({{\mathbb {R}}}^n)\) (the variable Lebesgue space), \(X:=L_\omega ^p({{\mathbb {R}}}^n)\) (the weighted Lebesgue space) and \(X:=(E_\Phi ^r)_t({{\mathbb {R}}}^n)\) (the Orlicz-slice space), the Littlewood–Paley function characterizations of \(H_X({{\mathbb {R}}}^n)\) obtained in this article improve the existing results via weakening the assumptions on the Littlewood–Paley functions and widening the range of \(\lambda \) in the Littlewood–Paley \(g_\lambda ^*\)-function characterization of \(H_X({\mathbb {R}}^n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-Shammala, W., Torchinsky, A.: The Hardy–Lorentz spaces \(H^{p, q}({{{\mathbb{R}}^n}})\). Studia Math. 182, 283–294 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Adamowicz, T., Harjulehto, P., Hästö, P.: Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces. Math. Scand.116, 5–22 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Adams, D.R.: Morrey Spaces. Birkhäuser/Springer, Cham (2015)

    MATH  Google Scholar 

  4. Adams, D.R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53, 1629–1663 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Andersen, K.F., John, R.T.: Weighted inequalities for vecter-valued maximal functions and singular integrals. Studia Math. 69, 19–31 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Auscher, P.: Change of angle in tent spaces. C. R. Math. Acad. Sci. Paris 349, 297–301 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Auscher, P., Mourgoglou, M.: Representation and uniqueness for boundary value elliptic problems via first order systems. Rev. Mat. Iberoam. 35, 241–315 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Auscher, P., Prisuelos-Arribas, C.: Tent space boundedness via extrapolation. Math. Z. 286, 1575–1604 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Benedek, A., Panzone, R.: The space \(L^p\), with mixed norm. Duke Math. J. 28, 301–324 (1961)

    MathSciNet  MATH  Google Scholar 

  10. Bennett, C., Sharpley, R.: Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston (1988)

  11. Bui, H.Q.: Weighted Hardy spaces. Math. Nachr. 103, 45–62 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math. 16, 1–64 (1975)

    MathSciNet  MATH  Google Scholar 

  13. Calderón, A.-P.: Commutators of singular integral operators. Proc. Nat. Acad. Sci. USA 53, 1092–1099 (1965)

    MathSciNet  MATH  Google Scholar 

  14. Cao, J., Chang, D.-C., Yang, D., Yang, S.: Boundedness of fractional integrals on weighted Orlicz-Hardy spaces. Math. Methods Appl. Sci. 36, 2069–2085 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Chen, Y.Z., Lau, K.S.: Some new classes of Hardy spaces. J. Funct. Anal. 84, 255–278 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. (7) 7, 273–279 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Cleanthous, G., Georgiadis, A. G., Nielsen, M.: Discrete decomposition of homogeneous mixed-norm Besov spaces. In: Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, pp. 167–184. Contemp. Math. 693, Amer. Math. Soc. Providence (2017)

  18. Coifman, R.R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue Space. Appl. Number. Harmon Aanl., Birkhäuser/Springer, Heidelberg, Foundations and Harmonic Analysis (2013)

  20. Cruz-Uribe, D.V., Martell, J.M., Pérez, C.: Weights. Extrapolation and the Theory of Rubio de Francia. Birkhäuser/Springer Basel AG, Basel (2011)

  21. Cruz-Uribe, D.V., Wang, L.A.D.: Variable Hardy spaces. Indiana Univ. Math. J. 63, 447–493 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, 1731–1768 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Diening, L., Harjulehto, P., Hästö, P., R\({\mathring{\rm u}}\)žička, M.: Lebesgue and Sobolev Spaceswith Variable Exponents. Lecture Notes in Math. 2017, Springer, Heidelberg (2011)

  24. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    MathSciNet  MATH  Google Scholar 

  25. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Math. Notes, vol. 28, Princeton Univ. Press, Princeton, (1982)

  26. García-Cuerva, J.: Weighted \(H^p\) spaces, 0. 162, 1–63 (1979)

  27. García-Cuerva, J.: Hardy spaces and Beurling algebras. J. Lond. Math. Soc. (2) 39, 499–513 (1989)

    MathSciNet  MATH  Google Scholar 

  28. García-Cuerva, J., Herrero, M.J.L.: A theory of Hardy spaces associated to Herz spaces. Proc. Lond. Math. Soc. (3) 69, 605–628 (1994)

    MathSciNet  MATH  Google Scholar 

  29. Georgiadis, A.G., Johnsen, J., Nielsen, M.: Wavelet transforms for homogeneous mixed-norm Triebel-Lizorkin spaces. Monatsh. Math. 183, 587–624 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Grafakos, L.: Classical Fourier Analysis, 3rd edn. Grad. Texts in Math. 249. Springer, New York (2014)

  31. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104, 93–140 (1960)

    MathSciNet  MATH  Google Scholar 

  32. Ho, K.-P.: Atomic decompositions of weighted Hardy–Morrey spaces. Hokkaido Math. J. 42, 131–157 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Ho, K.-P.: Atomic decomposition of Hardy–Morrey spaces with variable exponents. Ann. Acad. Sci. Fenn. Math. 40, 31–62 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun. Contemp. Math. 15(6), 1350029 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Huang, L., Liu, J., Yang, D., Yuan, W.: Atomic and Littlewood–Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. J. Geom. Anal. 29, 1991–2067 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Huang, L., Liu, J., Yang, D., Yuan, W.: Dual spaces of anisotropic mixed-norm Hardy spaces. Proc. Am. Math. Soc. 147, 1201–1215 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Huang, L., Yang, D.: On function spaces with mixed norms—A survey. J. Math. Study (accepted)

  38. Iwaniec, T., Verde, A.: A study of Jacobians in Hardy–Orlicz spaces. Proc. R. Soc. Edinb. Sect. A 129, 539–570 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Jia, H., Wang, H.: Decomposition of Hardy–Morrey spaces. J. Math. Anal. Appl. 354, 99–110 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 41(116), 592–618 (1991)

    MATH  Google Scholar 

  41. Ky, L.D.: New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators. Integral Equ. Oper. Theory 78, 115–150 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Li, B., Fan, X., Yang, D.: Littlewood–Paley characterizations of anisotropic Hardy spaces of Musielak–Orlicz type. Taiwan. J. Math. 19, 279–314 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Liang, Y., Huang, J., Yang, D.: New real-variable characterizations of Musielak–Orlicz Hardy spaces. J. Math. Anal. Appl. 395, 413–428 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Littlewood, J.E., Paley, R.E.A.C.: Theorems on Fourier series and power series. J. Lond. Math. Soc. (2) 6, 230–233 (1931)

    MathSciNet  MATH  Google Scholar 

  45. Liu, J., Yang, D., Yuan, W.: Littlewood-Paley characterizations of anisotropic Hardy–Lorentz spaces. Acta Math. Sci. Ser. B (Engl. Ed.) 38, 1–33 (2018)

  46. Lizorkin, P. I.: Multipliers of Fourier integrals and estimates of convolutions in spaces with mixed norm. Applications, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 34, 218–247 (1970)

  47. Lu, S., Yang, D.: The local versions of \(H^p({{{\mathbb{R}}^n}})\) spaces at the origin. Studia Math. 116, 103–131 (1995)

    MathSciNet  MATH  Google Scholar 

  48. Lu, S., Yang, D.: The Weighted Herz-Type Hardy Spaces and Its Applications. Sciece Press, Beijing (2008)

    Google Scholar 

  49. Martell, J.M., Prisuelos-Arribas, C.: Weighted Hardy spaces associated with elliptic operators. Part I: Weighted norm inequalities for conical square functions. Trans. Am. Math. Soc. 369, 4193–4233 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)

    MathSciNet  MATH  Google Scholar 

  51. Nakai, E., Sawano, Y.: Hardy spaces with variable expoments and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Nakai, E., Sawano, Y.: Orlicz–Hardy spaces and their duals. Sci. China Math. 57, 903–962 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen, Tokyo (1950)

    MATH  Google Scholar 

  54. Nakano, H.: Topology of Linear Topological Spaces. Maruzen, Tokyo (1951)

    Google Scholar 

  55. Nogayama, T.: Mixed Morrey spaces. Positivity 23, 961–1000 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics 146. Marcel Dekker Inc, New York (1991)

    Google Scholar 

  57. Sawano, Y.: Theory of Besov Spaces, Developments in Mathematics 56. Springer, Singapore (2018)

    Google Scholar 

  58. Sawano, Y.: A note on Besov–Morrey spaces and Triebel-Lizorkin-Morrey spaces. Acta Math. Sinica (Engl. Ser.) 25, 1223–1242 (2009)

    MathSciNet  MATH  Google Scholar 

  59. Sawano, Y., Ho, K.-P., Yang, D., Yang, S.: Hardy spaces for ball quasi-Banach function spaces. Diss. Math. (Rozprawy Mat.) 525, 1–102 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures. Acta Math. Sin. (Engl. Ser.) 21, 1535-1544 (2005)

  61. Sawano, Y., Tanaka, H.: The Fatou property of block spaces. J. Math. Sci. Univ. Tokyo 22, 663–683 (2015)

    MathSciNet  MATH  Google Scholar 

  62. Serra, C.F.: Molecular characterization of Hardy–Orlicz spaces. Rev. Un. Math. Argentia 40, 203–217 (1996)

    MathSciNet  MATH  Google Scholar 

  63. Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables, I: the theory of \(H^p\) spaces. Acta Math. 103, 25–62 (1960)

    MathSciNet  MATH  Google Scholar 

  64. Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Math, vol. 1381. Springer, Berlin (1989)

  65. Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)

    MathSciNet  MATH  Google Scholar 

  66. Ullrich, T.: Continuous characterization of Besov–Lizorkin–Triebel space and new interpretations as coorbits. J. Funct. Spaces Appl. Art. ID 163213 (2012)

  67. Viviani, B.E.: An atomic decomposition of the predual of \(BMO(\rho )\). Rev. Mat. Iberoam. 3, 401–425 (1987)

    MathSciNet  MATH  Google Scholar 

  68. Wang, F., Yang, D., Yang, S.: Applications of Hardy spaces associated with ball quasi-Banach function spaces. Results Math. 75. Art. 26 (2020)

  69. Wang, S., Yang, D., Yuan, W., Zhang, Y.: Weak Hardy-type spaces associated with ball quasi-banach function spaces II: Littlewood-Paley characterizations and real interpolation. J. Geom. Anal. (2019). https://doi.org/10.1007/s12220-019-00293-1

  70. Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and their applications. J. Funct. Anal. 271, 2822–2887 (2016)

    MathSciNet  MATH  Google Scholar 

  71. Yang, D., Liang, Y., Ky, L. D.: Real-Variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Math. 2182, Springer, New York (2017)

  72. Yang, D., Yang, S.: Weighted local Orlicz Hardy spaces with applications to pseudo-differential operators. Diss. Math. (Rozprawy Mat.) 478, 1–78 (2011)

    MathSciNet  MATH  Google Scholar 

  73. Yang, D., Yang, S.: Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of \({{{\mathbb{R}}^n}}\). Indiana Univ. Math. J. 61, 81–129 (2012)

    MathSciNet  MATH  Google Scholar 

  74. Yang, D., Zhuo, C., Nakai, E.: Characterizations of variable exponent Hardy spaces via Riesz transforms. Rev. Mat. Complut. 29, 245–270 (2016)

    MathSciNet  MATH  Google Scholar 

  75. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Math, vol. 2005. Springer, Berlin (2010)

  76. Zhang, Y., Yang, D., Yuan, W., Wang, S.: Real-variable characterizations of Orlicz-slice Hardy spaces. Anal. Appl. (Singap.) 17, 597–664 (2019)

    MathSciNet  MATH  Google Scholar 

  77. Zhang, Y., Wang, S., Yang, D., Yuan, W.: Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators. Sci. China Math. (2020). https://doi.org/10.1007/s11425-019-1645-1

  78. Zhuo, C., Sawano, Y., Yang, D.: Hardy spaces with variable exponents on RD-spaces and applications. Diss. Math. (Rozprawy Mat.) 520, 1–74 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for her/his useful comments which indeed improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dachun Yang or Yangyang Zhang.

Additional information

Communicated by Irene Sabadini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “In memory of Carlos A. Berenstein (1944-2019)” edited by Irene Sabadini and Daniele Struppa.

This project is supported by the National Natural Science Foundation of China (Grant Nos. 11971058, 11761131002 and 11671185). Der-Chen Chang is partially supported by an NSF Grant DMS-1408839 and a McDevitt Endowment Fund at Georgetown University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, DC., Wang, S., Yang, D. et al. Littlewood-Paley Characterizations of Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces. Complex Anal. Oper. Theory 14, 40 (2020). https://doi.org/10.1007/s11785-020-00998-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-020-00998-0

Keywords

Mathematics Subject Classification

Navigation