Skip to main content
Log in

Initial Value Problem for the Pair Transition Coupled Nonlinear Schrödinger Equations via the Riemann–Hilbert Method

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this work, the matrix Riemann–Hilbert problem of the pair transition coupled nonlinear Schrödinger (ptcNLS) equations is presented in the complex \(\zeta \)-plane. According to the unique solution of the resulting Riemann–Hilbert problem, the formal soliton solution to the initial value problem of the ptcNLS equations is derived ultimately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tasgal, R.S., Potasek, M.J.: Soliton solutions to coupled higher-order nonlinear Schrödinger equations. J. Math. Phys. 33, 1208 (1992)

    Article  MathSciNet  Google Scholar 

  2. Biswas, A., Konar, S.: Quasi-particle theory of optical soliton interaction. Commun. Nonlinear Sci. Numer. Simul. 12, 1202 (2007)

    Article  MathSciNet  Google Scholar 

  3. Dai, C.Q., Liu, J., Fan, Y., Yu, D.G.: Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality. Nonlinear Dyn 88(2), 1373–1383 (2017)

    Article  Google Scholar 

  4. Wang, D.S., Guo, B.L., Wang, X.L.: Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions. J. Differ. Equ. 266(9), 5209–5253 (2019)

    Article  MathSciNet  Google Scholar 

  5. Zhao, X.J., Guo, R., Hao, H.Q.: \(N\)-fold Darboux transformation and discrete soliton solutions for the discrete Hirota equation. Appl. Math. Lett. 75, 114–120 (2018)

    Article  MathSciNet  Google Scholar 

  6. Zhang, Y.S., Guo, L.J., He, J.S., Zhou, Z.X.: Darboux transformation of the second-type derivative nonlinear Schrödinger equation. Lett. Math. Phys. 105, 853 (2015)

    Article  MathSciNet  Google Scholar 

  7. Malomed, B.A.: Bound solitons in coupled nonlinear Schrödinger equations. Phys. Rev. A 45, R8321 (1992)

    Article  Google Scholar 

  8. Park, Q.H., Shin, H.J.: Painlevé analysis of the coupled nonlinear Schrödinger equation for polarized optical waves in an isotropic medium. Phys. Rev. E 59, 2373 (1999)

    Article  MathSciNet  Google Scholar 

  9. Park, Q.H., Shin, H.J.: Systematic construction of multicomponent optical solitons. Phys. Rev. E 61, 309315 (2000)

    MathSciNet  Google Scholar 

  10. Lü, X., Tian, B.: Vector bright soliton behaviors associated with negative coherent coupling. Phys. Rev. E 85, 026117 (2012)

    Article  Google Scholar 

  11. Ling, L.M., Zhao, L.C.: Integrable pair-transition-coupled nonlinear Schrödinger equations. Phys. Rev. E 92, 022924 (2015)

    Article  MathSciNet  Google Scholar 

  12. Zhang, G.Q., Yan, Z.Y., Wen, X.Y.: Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations. Proc. R. Soc. A 473, 20170243 (2017)

    Article  Google Scholar 

  13. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  14. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  15. Ablowitz, M.J., Kaup, D.J., Newell, A.C., et al.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  MathSciNet  Google Scholar 

  16. Ablowitz, M.J., Kaup, D.J., Newell, A.C., et al.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  17. Ma, W.X.: Riemann–Hilbert problems and \(N\)-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132, 45–54 (2018)

    Article  MathSciNet  Google Scholar 

  18. Tian, S.F.: Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method. J. Phys. A: Math. Theor. 50(39), 395204 (2017)

    Article  MathSciNet  Google Scholar 

  19. Tian, S.F.: The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. A 472, 20160588 (2016)

    Article  Google Scholar 

  20. Tian, S.F., Zhang, T.T.: Long-time asymptotic behavior for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. Proc. Amer. Math. Soc. 146(4), 1713–1729 (2018)

    Article  MathSciNet  Google Scholar 

  21. Tian, S.F.: Initial-boundary value problems for the coupled modified Korteweg–de Vries equation on the interval. Commun. Pure Appl. Anal. 17(3), 923–957 (2018)

    Article  MathSciNet  Google Scholar 

  22. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262(1), 506–558 (2017)

    Article  Google Scholar 

  23. Yan, Z.Y.: An initial-boundary value problem for the integrable spin-1 Gross–Pitaevskii equations with a \(4\times 4\) Lax pair on the half-line. Chaos. 27(5), 053117 (2017)

    Article  MathSciNet  Google Scholar 

  24. Xu, J., Fan, E.G.: The three-wave equation on the half-line. Phys. Lett. A 378(1–2), 26–33 (2014)

    Article  MathSciNet  Google Scholar 

  25. Hu, B.B., Xia, T.C., Ma, W.X.: Riemann–Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg–de Vries equation on the half-line. Appl. Math. Comput. 332, 148–159 (2018)

    Article  MathSciNet  Google Scholar 

  26. Geng, X.G., Liu, H., Zhu, J.Y.: Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line. Stud. Appl. Math. 135, 310–346 (2015)

    Article  MathSciNet  Google Scholar 

  27. Lenells, J., Fokas, A.S.: On a novel integrable generalization of the nonlinear Schrödinger equation. Nonlinearity 22, 11–27 (2009)

    Article  MathSciNet  Google Scholar 

  28. Boutet de Monvel, A., Shepelsky, D., Zielinski, L.: The short pulse equation by a Riemann–Hilbert approach. Lett. Math. Phys. 107, 1345–1373 (2017)

    Article  MathSciNet  Google Scholar 

  29. Boutet de Monvel, A., Shepelsky, D.: The Ostrovsky–Vakhnenko equation by a Riemann–Hilbert approach. J. Phys. A: Math. Theor. 48, 035204 (2015)

    Article  MathSciNet  Google Scholar 

  30. Guo, B.L., Liu, N., Wang, Y.F.: A Riemann–Hilbert approach for a new type coupled nonlinear Schrödinger equations. J. Math. Anal. Appl. 459, 145–158 (2018)

    Article  MathSciNet  Google Scholar 

  31. Lenells, J.: The derivative nonlinear Schrödinger equation on the half-line. Phys. D 237, 3008–3019 (2008)

    Article  MathSciNet  Google Scholar 

  32. Lenells, J.: Initial-boundary value problems for integrable evolution equations with \(3\times 3\) Lax pairs. Phys. D 241, 857–875 (2012)

    Article  MathSciNet  Google Scholar 

  33. Liu, N., Guo, B.L.: Long-time asymptotics for the Sasa–Satsuma equation via nonlinear steepest descent method. J. Math. Phys. 60(1), 011504 (2019)

    Article  MathSciNet  Google Scholar 

  34. Ablowitz, M.J., Fokas, A.S.: Complex Analysis: Introduction and Applications, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  35. Fokas, A.S.: A unified approach to boundary value problems. In: CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM (2008)

  36. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of numerical physics by the method of the inverse scattering problem I. Funct. Anal. Appl. 8, 226–235 (1974)

    Article  Google Scholar 

  37. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of numerical physics by the method of the inverse scattering problem II. Funct. Anal. Appl. 13, 166–174 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the referees for their valuable comments and suggestions. This work was supported by the Postgraduate Research and Practice of Educational Reform for Graduate students in CUMT under Grant No. 2019YJSJG046, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, the Qinglan Project of Jiangsu Province of China, the National Natural Science Foundation of China under Grant No. 11975306, the Fundamental Research Fund for the Central Universities under the Grant Nos. 2019ZDPY07 and 2019QNA35, and the General Financial Grant from the China Postdoctoral Science Foundation under Grant Nos. 2015M570498 and 2017T100413.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou-Fu Tian or Tian-Tian Zhang.

Additional information

Communicated by Fabrizio Colombo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, WQ., Tian, SF. & Zhang, TT. Initial Value Problem for the Pair Transition Coupled Nonlinear Schrödinger Equations via the Riemann–Hilbert Method. Complex Anal. Oper. Theory 14, 38 (2020). https://doi.org/10.1007/s11785-020-00997-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-020-00997-1

Keywords

Mathematics Subject Classification

Navigation